一种单膨胀正泊松分布的加权误差最小化参数估计技术

IF 3.2 Q3 Mathematics
Razik Ridzuan Mohd Tajuddin
{"title":"一种单膨胀正泊松分布的加权误差最小化参数估计技术","authors":"Razik Ridzuan Mohd Tajuddin","doi":"10.1016/j.rico.2025.100569","DOIUrl":null,"url":null,"abstract":"<div><div>An error-minimizing estimator is always preferred in model fittings. However, each error-minimizing estimator minimizes error differently. This paper combines four error-minimizing estimators, which are root mean-squared error, mean absolute error, root mean-squared log error and mean absolute percentage error via a weighted approach. The estimation involves two levels. In the first-level estimation, the estimated parameters are obtained by minimizing error values differently and separately. In the second-level estimation, the resulting estimates from the first-level estimation are combined by either fixed and controlled weights or free and uncontrolled weights. A real crime dataset on the frequency of drunk drivers was considered for demonstration of the technique.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"19 ","pages":"Article 100569"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A weighted error-minimizer parameter estimation technique for one-inflated positive Poisson distribution\",\"authors\":\"Razik Ridzuan Mohd Tajuddin\",\"doi\":\"10.1016/j.rico.2025.100569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An error-minimizing estimator is always preferred in model fittings. However, each error-minimizing estimator minimizes error differently. This paper combines four error-minimizing estimators, which are root mean-squared error, mean absolute error, root mean-squared log error and mean absolute percentage error via a weighted approach. The estimation involves two levels. In the first-level estimation, the estimated parameters are obtained by minimizing error values differently and separately. In the second-level estimation, the resulting estimates from the first-level estimation are combined by either fixed and controlled weights or free and uncontrolled weights. A real crime dataset on the frequency of drunk drivers was considered for demonstration of the technique.</div></div>\",\"PeriodicalId\":34733,\"journal\":{\"name\":\"Results in Control and Optimization\",\"volume\":\"19 \",\"pages\":\"Article 100569\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666720725000554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720725000554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在模型装配中,误差最小化估计器总是首选的。然而,每个误差最小化估计器最小化误差的方式不同。本文采用加权方法结合了均方根误差、均方根绝对误差、均方根对数误差和均方根绝对百分比误差四种误差最小化估计量。估计涉及两个层次。在第一级估计中,分别通过最小化误差值来获得估计参数。在第二级估计中,由第一级估计得到的结果估计由固定和受控的权重或自由和不受控制的权重组合。为了演示该技术,我们考虑了一个真实的醉酒驾驶频率犯罪数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A weighted error-minimizer parameter estimation technique for one-inflated positive Poisson distribution
An error-minimizing estimator is always preferred in model fittings. However, each error-minimizing estimator minimizes error differently. This paper combines four error-minimizing estimators, which are root mean-squared error, mean absolute error, root mean-squared log error and mean absolute percentage error via a weighted approach. The estimation involves two levels. In the first-level estimation, the estimated parameters are obtained by minimizing error values differently and separately. In the second-level estimation, the resulting estimates from the first-level estimation are combined by either fixed and controlled weights or free and uncontrolled weights. A real crime dataset on the frequency of drunk drivers was considered for demonstration of the technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信