MESCNN:基于卷积神经网络的震级估计系统

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Ji’an Liao , Siran Yang , Yanwei Wang , Jianming Wang , Dengke Zhao , Zhaoyan Li , Zifa Wang
{"title":"MESCNN:基于卷积神经网络的震级估计系统","authors":"Ji’an Liao ,&nbsp;Siran Yang ,&nbsp;Yanwei Wang ,&nbsp;Jianming Wang ,&nbsp;Dengke Zhao ,&nbsp;Zhaoyan Li ,&nbsp;Zifa Wang","doi":"10.1016/j.simpa.2025.100748","DOIUrl":null,"url":null,"abstract":"<div><div>Magnitude is a critical parameter in earthquake early warning systems, directly influencing alert issuance and warning levels. In this study, we introduce the Magnitude Estimation System based on Convolutional Neural Networks (MESCNN), a novel approach built upon the Python programming language and the TensorFlow deep learning framework. MESCNN automates the calculation of earthquake magnitudes using real-time seismic data, leveraging the capabilities of convolutional neural networks (CNN) to analyze seismic waveforms. The system is designed to enhance the accuracy and efficiency of magnitude estimation, thereby enabling more timely and reliable earthquake warnings to reduce the impact of seismic events.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"24 ","pages":"Article 100748"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MESCNN: Magnitude estimation system based on convolutional neural networks\",\"authors\":\"Ji’an Liao ,&nbsp;Siran Yang ,&nbsp;Yanwei Wang ,&nbsp;Jianming Wang ,&nbsp;Dengke Zhao ,&nbsp;Zhaoyan Li ,&nbsp;Zifa Wang\",\"doi\":\"10.1016/j.simpa.2025.100748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Magnitude is a critical parameter in earthquake early warning systems, directly influencing alert issuance and warning levels. In this study, we introduce the Magnitude Estimation System based on Convolutional Neural Networks (MESCNN), a novel approach built upon the Python programming language and the TensorFlow deep learning framework. MESCNN automates the calculation of earthquake magnitudes using real-time seismic data, leveraging the capabilities of convolutional neural networks (CNN) to analyze seismic waveforms. The system is designed to enhance the accuracy and efficiency of magnitude estimation, thereby enabling more timely and reliable earthquake warnings to reduce the impact of seismic events.</div></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"24 \",\"pages\":\"Article 100748\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963825000089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963825000089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

震级是地震预警系统中的一个重要参数,直接影响到警报的发布和预警级别。在本研究中,我们介绍了基于卷积神经网络(MESCNN)的幅度估计系统,这是一种基于Python编程语言和TensorFlow深度学习框架的新方法。MESCNN利用卷积神经网络(CNN)分析地震波形的能力,利用实时地震数据自动计算地震震级。该系统旨在提高震级估计的准确性和效率,从而使地震预警更及时和可靠,以减少地震事件的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MESCNN: Magnitude estimation system based on convolutional neural networks
Magnitude is a critical parameter in earthquake early warning systems, directly influencing alert issuance and warning levels. In this study, we introduce the Magnitude Estimation System based on Convolutional Neural Networks (MESCNN), a novel approach built upon the Python programming language and the TensorFlow deep learning framework. MESCNN automates the calculation of earthquake magnitudes using real-time seismic data, leveraging the capabilities of convolutional neural networks (CNN) to analyze seismic waveforms. The system is designed to enhance the accuracy and efficiency of magnitude estimation, thereby enabling more timely and reliable earthquake warnings to reduce the impact of seismic events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信