William D. Leineweber , Gabriela Acevedo Munares , Christian Leycam , Raul Michael , Juliette Noyer , Patrick Jurney
{"title":"全息层析显微镜显示内皮细胞在内皮化过程中无标记的定量动力学","authors":"William D. Leineweber , Gabriela Acevedo Munares , Christian Leycam , Raul Michael , Juliette Noyer , Patrick Jurney","doi":"10.1016/j.ejcb.2025.151492","DOIUrl":null,"url":null,"abstract":"<div><div>Holotomograhic microscopy (HTM) has emerged as a non-invasive imaging technique that offers high-resolution, quantitative 3D imaging of biological samples. This study explores the application of HTM in examining endothelial cells (ECs). HTM overcomes the limitations of traditional microscopy methods in capturing the real-time dynamics of ECs by leveraging the refractive index (RI) to map 3D distributions label-free. This work demonstrates the utility of HTM in visualizing key cellular processes during endothelialization, wherein ECs anchor, adhere, migrate, and proliferate. Leveraging the high resolution and quantitative power of HTM, we show that lipid droplets and mitochondria are readily visualized, enabling more comprehensive studies on their respective roles during endothelialization. The study highlights how HTM on a commercial instrument can uncover novel insights into HUVEC cell behavior, offering potential applications in medical diagnostics and research, particularly in developing treatments for cardiovascular diseases. This advanced imaging technique not only enhances our understanding of EC biology but also presents a significant step forward in the study of cardiovascular diseases, providing a robust platform for future research and therapeutic development.</div></div>","PeriodicalId":12010,"journal":{"name":"European journal of cell biology","volume":"104 2","pages":"Article 151492"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holotomographic microscopy reveals label-free quantitative dynamics of endothelial cells during endothelialization\",\"authors\":\"William D. Leineweber , Gabriela Acevedo Munares , Christian Leycam , Raul Michael , Juliette Noyer , Patrick Jurney\",\"doi\":\"10.1016/j.ejcb.2025.151492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Holotomograhic microscopy (HTM) has emerged as a non-invasive imaging technique that offers high-resolution, quantitative 3D imaging of biological samples. This study explores the application of HTM in examining endothelial cells (ECs). HTM overcomes the limitations of traditional microscopy methods in capturing the real-time dynamics of ECs by leveraging the refractive index (RI) to map 3D distributions label-free. This work demonstrates the utility of HTM in visualizing key cellular processes during endothelialization, wherein ECs anchor, adhere, migrate, and proliferate. Leveraging the high resolution and quantitative power of HTM, we show that lipid droplets and mitochondria are readily visualized, enabling more comprehensive studies on their respective roles during endothelialization. The study highlights how HTM on a commercial instrument can uncover novel insights into HUVEC cell behavior, offering potential applications in medical diagnostics and research, particularly in developing treatments for cardiovascular diseases. This advanced imaging technique not only enhances our understanding of EC biology but also presents a significant step forward in the study of cardiovascular diseases, providing a robust platform for future research and therapeutic development.</div></div>\",\"PeriodicalId\":12010,\"journal\":{\"name\":\"European journal of cell biology\",\"volume\":\"104 2\",\"pages\":\"Article 151492\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of cell biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0171933525000172\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of cell biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0171933525000172","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Holotomographic microscopy reveals label-free quantitative dynamics of endothelial cells during endothelialization
Holotomograhic microscopy (HTM) has emerged as a non-invasive imaging technique that offers high-resolution, quantitative 3D imaging of biological samples. This study explores the application of HTM in examining endothelial cells (ECs). HTM overcomes the limitations of traditional microscopy methods in capturing the real-time dynamics of ECs by leveraging the refractive index (RI) to map 3D distributions label-free. This work demonstrates the utility of HTM in visualizing key cellular processes during endothelialization, wherein ECs anchor, adhere, migrate, and proliferate. Leveraging the high resolution and quantitative power of HTM, we show that lipid droplets and mitochondria are readily visualized, enabling more comprehensive studies on their respective roles during endothelialization. The study highlights how HTM on a commercial instrument can uncover novel insights into HUVEC cell behavior, offering potential applications in medical diagnostics and research, particularly in developing treatments for cardiovascular diseases. This advanced imaging technique not only enhances our understanding of EC biology but also presents a significant step forward in the study of cardiovascular diseases, providing a robust platform for future research and therapeutic development.
期刊介绍:
The European Journal of Cell Biology, a journal of experimental cell investigation, publishes reviews, original articles and short communications on the structure, function and macromolecular organization of cells and cell components. Contributions focusing on cellular dynamics, motility and differentiation, particularly if related to cellular biochemistry, molecular biology, immunology, neurobiology, and developmental biology are encouraged. Manuscripts describing significant technical advances are also welcome. In addition, papers dealing with biomedical issues of general interest to cell biologists will be published. Contributions addressing cell biological problems in prokaryotes and plants are also welcome.