{"title":"基于可学习关联信息的跨模态特征映射的药物-靶标相互作用动态预测","authors":"Ziyu Wei, Zhengyu Wang* and Chang Tang*, ","doi":"10.1021/acs.jcim.4c0234810.1021/acs.jcim.4c02348","DOIUrl":null,"url":null,"abstract":"<p >Predicting drug–target interactions (DTIs) is essential for advancing drug discovery and personalized medicine. However, accurately capturing the intricate binding relationships between drugs and targets remains a significant challenge, particularly when attempting to fully leverage the vast correlation information inherent in molecular data. This complexity is further exacerbated by the structural differences and sequence length disparities between drug molecules and protein targets, which can hinder effective feature alignment and interaction modeling. To address these challenges, we propose a model named LAM-DTI. First, drug and target features are extracted from the original molecular sequence data using a multilayer convolutional neural network. To address the sequence length discrepancy between drug and target features, we apply a connectionist temporal classification module to generate normalized feature sequences. Building on this, we introduce a learnable association information matrix as a flexible intermediary, which dynamically adjusts to capture accurate DTI association information, thereby enhancing cross-modal mapping within a unified latent space. This progressive mapping strategy enables the model to form an interaction projection between drugs and targets, effectively identifying critical interaction regions and guiding the capture of complex interaction-related features. Extensive experiments on three well-known benchmark data sets demonstrate that LAM-DTI significantly outperforms previous models.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 8","pages":"3915–3927 3915–3927"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Prediction of Drug–Target Interactions via Cross-Modal Feature Mapping with Learnable Association Information\",\"authors\":\"Ziyu Wei, Zhengyu Wang* and Chang Tang*, \",\"doi\":\"10.1021/acs.jcim.4c0234810.1021/acs.jcim.4c02348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Predicting drug–target interactions (DTIs) is essential for advancing drug discovery and personalized medicine. However, accurately capturing the intricate binding relationships between drugs and targets remains a significant challenge, particularly when attempting to fully leverage the vast correlation information inherent in molecular data. This complexity is further exacerbated by the structural differences and sequence length disparities between drug molecules and protein targets, which can hinder effective feature alignment and interaction modeling. To address these challenges, we propose a model named LAM-DTI. First, drug and target features are extracted from the original molecular sequence data using a multilayer convolutional neural network. To address the sequence length discrepancy between drug and target features, we apply a connectionist temporal classification module to generate normalized feature sequences. Building on this, we introduce a learnable association information matrix as a flexible intermediary, which dynamically adjusts to capture accurate DTI association information, thereby enhancing cross-modal mapping within a unified latent space. This progressive mapping strategy enables the model to form an interaction projection between drugs and targets, effectively identifying critical interaction regions and guiding the capture of complex interaction-related features. Extensive experiments on three well-known benchmark data sets demonstrate that LAM-DTI significantly outperforms previous models.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"65 8\",\"pages\":\"3915–3927 3915–3927\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.4c02348\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c02348","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Dynamic Prediction of Drug–Target Interactions via Cross-Modal Feature Mapping with Learnable Association Information
Predicting drug–target interactions (DTIs) is essential for advancing drug discovery and personalized medicine. However, accurately capturing the intricate binding relationships between drugs and targets remains a significant challenge, particularly when attempting to fully leverage the vast correlation information inherent in molecular data. This complexity is further exacerbated by the structural differences and sequence length disparities between drug molecules and protein targets, which can hinder effective feature alignment and interaction modeling. To address these challenges, we propose a model named LAM-DTI. First, drug and target features are extracted from the original molecular sequence data using a multilayer convolutional neural network. To address the sequence length discrepancy between drug and target features, we apply a connectionist temporal classification module to generate normalized feature sequences. Building on this, we introduce a learnable association information matrix as a flexible intermediary, which dynamically adjusts to capture accurate DTI association information, thereby enhancing cross-modal mapping within a unified latent space. This progressive mapping strategy enables the model to form an interaction projection between drugs and targets, effectively identifying critical interaction regions and guiding the capture of complex interaction-related features. Extensive experiments on three well-known benchmark data sets demonstrate that LAM-DTI significantly outperforms previous models.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.