广义连续统回归(GCR):一种先进的多变量方法,用于精确降维和高效的回归建模

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS
Yang Chen , Chonghui Dan , Yao He, Xiaoyuan Zheng
{"title":"广义连续统回归(GCR):一种先进的多变量方法,用于精确降维和高效的回归建模","authors":"Yang Chen ,&nbsp;Chonghui Dan ,&nbsp;Yao He,&nbsp;Xiaoyuan Zheng","doi":"10.1016/j.chemolab.2025.105407","DOIUrl":null,"url":null,"abstract":"<div><div>The collinearity inherent in high-dimensional, low-sample-size (HDLSS) data critically undermines the accuracy of chemometric regression. We have proven that when predictor matrix <span><math><mrow><mi>X</mi></mrow></math></span> has full row rank, the optimal dimensionality of <em>X</em>-block latent variables (LVs) in multivariate linear regression equals <span><math><mrow><mi>r</mi><mi>a</mi><mi>n</mi><mi>k</mi><mrow><mo>(</mo><mi>Y</mi><mo>)</mo></mrow></mrow></math></span>. Based on this theoretical foundation, we develop generalized continuum regression (GCR), an advanced multivariate regression method rooted in continuum canonical correlation (CCC). GCR's core innovation lies in the extension of CCC's scalar parameter <span><math><mrow><mi>α</mi></mrow></math></span> to a vector form for precise dimension reduction in multivariate regression. We also develop an efficient numeric algorithm for computational speed. Real-world implementations on two spectroscopic datasets confirm that GCR adopts LVs with dimensionality equal to the rank of <span><math><mrow><mi>Y</mi></mrow></math></span>, validating its precise dimensionality reduction. When compared to CCC regression (CCCR), GCR exhibits superior performance with: (1) a 7.28 %–43.70 % reduction in mean-squared error for validation (MSEV) when utilizing two or three latent variables (LVs); and (2) a 30 to 55-fold increase in solution speed. These findings highlight GCR's potential as a valuable tool for dimensionality reduction and regression modeling in chemometrics, specifically for HDLSS analysis.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"262 ","pages":"Article 105407"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized continuum regression (GCR): An advanced multivariate method for precise dimensionality reduction and efficient regression modeling\",\"authors\":\"Yang Chen ,&nbsp;Chonghui Dan ,&nbsp;Yao He,&nbsp;Xiaoyuan Zheng\",\"doi\":\"10.1016/j.chemolab.2025.105407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The collinearity inherent in high-dimensional, low-sample-size (HDLSS) data critically undermines the accuracy of chemometric regression. We have proven that when predictor matrix <span><math><mrow><mi>X</mi></mrow></math></span> has full row rank, the optimal dimensionality of <em>X</em>-block latent variables (LVs) in multivariate linear regression equals <span><math><mrow><mi>r</mi><mi>a</mi><mi>n</mi><mi>k</mi><mrow><mo>(</mo><mi>Y</mi><mo>)</mo></mrow></mrow></math></span>. Based on this theoretical foundation, we develop generalized continuum regression (GCR), an advanced multivariate regression method rooted in continuum canonical correlation (CCC). GCR's core innovation lies in the extension of CCC's scalar parameter <span><math><mrow><mi>α</mi></mrow></math></span> to a vector form for precise dimension reduction in multivariate regression. We also develop an efficient numeric algorithm for computational speed. Real-world implementations on two spectroscopic datasets confirm that GCR adopts LVs with dimensionality equal to the rank of <span><math><mrow><mi>Y</mi></mrow></math></span>, validating its precise dimensionality reduction. When compared to CCC regression (CCCR), GCR exhibits superior performance with: (1) a 7.28 %–43.70 % reduction in mean-squared error for validation (MSEV) when utilizing two or three latent variables (LVs); and (2) a 30 to 55-fold increase in solution speed. These findings highlight GCR's potential as a valuable tool for dimensionality reduction and regression modeling in chemometrics, specifically for HDLSS analysis.</div></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"262 \",\"pages\":\"Article 105407\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743925000929\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743925000929","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

高维、低样本量(HDLSS)数据固有的共线性严重破坏了化学计量回归的准确性。我们证明了当预测矩阵X具有满行秩时,多元线性回归中X块潜在变量(lv)的最优维数等于秩(Y)。在此理论基础上,我们提出了一种基于连续统典型相关(CCC)的先进多元回归方法——广义连续统回归(GCR)。GCR的核心创新在于将CCC的标量参数α扩展为向量形式,以便在多元回归中进行精确降维。我们还开发了一种有效的计算速度数值算法。在两个光谱数据集上的实际实现证实了GCR采用了维数等于Y秩的lv,验证了其精确降维。与CCC回归(CCCR)相比,GCR表现出更好的性能:(1)当使用两个或三个潜在变量(LVs)时,验证的均方误差(MSEV)降低了7.28% - 43.70%;(2)溶液速度提高30至55倍。这些发现突出了GCR作为化学计量学中降维和回归建模的有价值工具的潜力,特别是对于HDLSS分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized continuum regression (GCR): An advanced multivariate method for precise dimensionality reduction and efficient regression modeling
The collinearity inherent in high-dimensional, low-sample-size (HDLSS) data critically undermines the accuracy of chemometric regression. We have proven that when predictor matrix X has full row rank, the optimal dimensionality of X-block latent variables (LVs) in multivariate linear regression equals rank(Y). Based on this theoretical foundation, we develop generalized continuum regression (GCR), an advanced multivariate regression method rooted in continuum canonical correlation (CCC). GCR's core innovation lies in the extension of CCC's scalar parameter α to a vector form for precise dimension reduction in multivariate regression. We also develop an efficient numeric algorithm for computational speed. Real-world implementations on two spectroscopic datasets confirm that GCR adopts LVs with dimensionality equal to the rank of Y, validating its precise dimensionality reduction. When compared to CCC regression (CCCR), GCR exhibits superior performance with: (1) a 7.28 %–43.70 % reduction in mean-squared error for validation (MSEV) when utilizing two or three latent variables (LVs); and (2) a 30 to 55-fold increase in solution speed. These findings highlight GCR's potential as a valuable tool for dimensionality reduction and regression modeling in chemometrics, specifically for HDLSS analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信