mno2修饰Ni3Se2/NF异质结催化剂促进低压水分解协同甲醇氧化和析氢

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xiaojun Qin, Fozia Sultana, Tongtong Li, Peng Zhang, Meijie Shi, Kaicheng Qian, Tong Wei, Zhixue Li, Jianming Bai* and Renhong Li*, 
{"title":"mno2修饰Ni3Se2/NF异质结催化剂促进低压水分解协同甲醇氧化和析氢","authors":"Xiaojun Qin,&nbsp;Fozia Sultana,&nbsp;Tongtong Li,&nbsp;Peng Zhang,&nbsp;Meijie Shi,&nbsp;Kaicheng Qian,&nbsp;Tong Wei,&nbsp;Zhixue Li,&nbsp;Jianming Bai* and Renhong Li*,&nbsp;","doi":"10.1021/acsaem.5c0012510.1021/acsaem.5c00125","DOIUrl":null,"url":null,"abstract":"<p >The anodic oxygen evolution reaction (OER) is characterized by intrinsically slow kinetics, constituting a fundamental bottleneck that restricts the overall efficiency of conventional water electrolysis systems. To address this challenge, we investigate methanol oxidation as a viable alternative to the OER for the anodic reaction, reducing energy input requirements. Here, we report the synthesis of a self-supported heterojunction catalyst, MnO<sub>2</sub>@Ni<sub>3</sub>Se<sub>2</sub>/NF, engineered via heterogeneous interface modification. The integrated Ni<sub>3</sub>Se<sub>2</sub>/MnO<sub>2</sub> heterostructures demonstrate bifunctional catalytic synergy for selective methanol oxidation and hydrogen evolution. The complementary electronic configurations between Ni<sub>3</sub>Se<sub>2</sub> and MnO<sub>2</sub> synergistically regulate intermediate adsorption energetics, while interfacial charge redistribution facilitates the in situ generation of catalytically active high-valent Ni species. As a result, the optimized MnO<sub>2</sub>@Ni<sub>3</sub>Se<sub>2</sub>/NF electrode demonstrates enhanced charge transfer kinetics and reduced activation barriers, delivering a methanol oxidation current density of 100 mA cm<sup>–2</sup> at 1.36 V. Moreover, in a coelectrolysis system, the catalyst enables simultaneous hydrogen evolution and methanol oxidation, achieving overall water splitting (OWS) with a current density of 100 mA cm<sup>–2</sup> at a lower input voltage of 1.60 V with sustained operational stability exceeding 100 h. This highlights the high energy conversion efficiency of methanol-assisted hydrogen production and demonstrates its significant potential for sustainable hydrogen generation.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 8","pages":"5153–5165 5153–5165"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting Synergistic Methanol Oxidation and Hydrogen Evolution via MnO2-Decorated Ni3Se2/NF Heterojunction Catalysts for Low-Voltage Water Splitting\",\"authors\":\"Xiaojun Qin,&nbsp;Fozia Sultana,&nbsp;Tongtong Li,&nbsp;Peng Zhang,&nbsp;Meijie Shi,&nbsp;Kaicheng Qian,&nbsp;Tong Wei,&nbsp;Zhixue Li,&nbsp;Jianming Bai* and Renhong Li*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c0012510.1021/acsaem.5c00125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The anodic oxygen evolution reaction (OER) is characterized by intrinsically slow kinetics, constituting a fundamental bottleneck that restricts the overall efficiency of conventional water electrolysis systems. To address this challenge, we investigate methanol oxidation as a viable alternative to the OER for the anodic reaction, reducing energy input requirements. Here, we report the synthesis of a self-supported heterojunction catalyst, MnO<sub>2</sub>@Ni<sub>3</sub>Se<sub>2</sub>/NF, engineered via heterogeneous interface modification. The integrated Ni<sub>3</sub>Se<sub>2</sub>/MnO<sub>2</sub> heterostructures demonstrate bifunctional catalytic synergy for selective methanol oxidation and hydrogen evolution. The complementary electronic configurations between Ni<sub>3</sub>Se<sub>2</sub> and MnO<sub>2</sub> synergistically regulate intermediate adsorption energetics, while interfacial charge redistribution facilitates the in situ generation of catalytically active high-valent Ni species. As a result, the optimized MnO<sub>2</sub>@Ni<sub>3</sub>Se<sub>2</sub>/NF electrode demonstrates enhanced charge transfer kinetics and reduced activation barriers, delivering a methanol oxidation current density of 100 mA cm<sup>–2</sup> at 1.36 V. Moreover, in a coelectrolysis system, the catalyst enables simultaneous hydrogen evolution and methanol oxidation, achieving overall water splitting (OWS) with a current density of 100 mA cm<sup>–2</sup> at a lower input voltage of 1.60 V with sustained operational stability exceeding 100 h. This highlights the high energy conversion efficiency of methanol-assisted hydrogen production and demonstrates its significant potential for sustainable hydrogen generation.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 8\",\"pages\":\"5153–5165 5153–5165\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c00125\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00125","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

阳极析氧反应(OER)具有固有的慢动力学特征,是制约传统电解系统整体效率的根本瓶颈。为了解决这一挑战,我们研究了甲醇氧化作为阳极反应OER的可行替代方案,减少了能量输入要求。在这里,我们报道了一种自支撑异质结催化剂的合成,MnO2@Ni3Se2/NF,通过异质界面修饰工程。集成的Ni3Se2/MnO2异质结构表现出选择性甲醇氧化和析氢的双功能催化协同作用。Ni3Se2和MnO2之间的互补电子构型协同调节中间吸附能量,而界面电荷的重新分配有利于原位生成具有催化活性的高价Ni。结果表明,优化后的MnO2@Ni3Se2/NF电极表现出增强的电荷转移动力学和降低的激活障碍,在1.36 V下提供100 mA cm-2的甲醇氧化电流密度。此外,在共电解系统中,该催化剂能够同时析氢和甲醇氧化,在较低的1.60 V输入电压下,以100 mA cm-2的电流密度实现整体水分解(OWS),持续运行稳定性超过100小时。这凸显了甲醇辅助制氢的高能量转换效率,并展示了其可持续制氢的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Boosting Synergistic Methanol Oxidation and Hydrogen Evolution via MnO2-Decorated Ni3Se2/NF Heterojunction Catalysts for Low-Voltage Water Splitting

Boosting Synergistic Methanol Oxidation and Hydrogen Evolution via MnO2-Decorated Ni3Se2/NF Heterojunction Catalysts for Low-Voltage Water Splitting

The anodic oxygen evolution reaction (OER) is characterized by intrinsically slow kinetics, constituting a fundamental bottleneck that restricts the overall efficiency of conventional water electrolysis systems. To address this challenge, we investigate methanol oxidation as a viable alternative to the OER for the anodic reaction, reducing energy input requirements. Here, we report the synthesis of a self-supported heterojunction catalyst, MnO2@Ni3Se2/NF, engineered via heterogeneous interface modification. The integrated Ni3Se2/MnO2 heterostructures demonstrate bifunctional catalytic synergy for selective methanol oxidation and hydrogen evolution. The complementary electronic configurations between Ni3Se2 and MnO2 synergistically regulate intermediate adsorption energetics, while interfacial charge redistribution facilitates the in situ generation of catalytically active high-valent Ni species. As a result, the optimized MnO2@Ni3Se2/NF electrode demonstrates enhanced charge transfer kinetics and reduced activation barriers, delivering a methanol oxidation current density of 100 mA cm–2 at 1.36 V. Moreover, in a coelectrolysis system, the catalyst enables simultaneous hydrogen evolution and methanol oxidation, achieving overall water splitting (OWS) with a current density of 100 mA cm–2 at a lower input voltage of 1.60 V with sustained operational stability exceeding 100 h. This highlights the high energy conversion efficiency of methanol-assisted hydrogen production and demonstrates its significant potential for sustainable hydrogen generation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信