Yang Yang, Yuwen Ma, Chao Sun, Chaomeng Bu, Yue Yan and Xianfu Li*,
{"title":"多孔NiMoO4@NiMn-LDH锚定泡沫镍核壳纳米复合材料:在高比电容非对称超级电容器中的应用","authors":"Yang Yang, Yuwen Ma, Chao Sun, Chaomeng Bu, Yue Yan and Xianfu Li*, ","doi":"10.1021/acsaem.4c0332010.1021/acsaem.4c03320","DOIUrl":null,"url":null,"abstract":"<p >Transition-metal oxides (TMOs) exhibit exceptional potential as candidate materials in supercapacitor applications. Nevertheless, their actual performance falls far short of expectations due to challenges such as poor electronic conductivity, insufficient electrochemical durability, and the scarcity of active sites within TMOs. Herein, we successfully synthesized a NiMoO<sub>4</sub> nanorod@NiMn-LDH nanosheet core–shell structure onto nickel foam (NiMoO<sub>4</sub>@NiMn-LDH/NF) via a straightforward two-step hydrothermal process, achieving complementary enhancement in performance. The core–shell architecture effectively shortens ion transport pathways and exposes abundant active sites, which establish a vital basis for boosting the energy storage efficiency of devices. Additionally, the notable synergistic effect among transition-metal ions further boosts the electrochemical performance. Consequently, the NiMoO<sub>4</sub>@NiMn-LDH/NF electrode exhibits an impressive areal capacitance of 9438.4 mF cm<sup>−2</sup> under 2 mA cm<sup>–2</sup>. Moreover, it features pre-eminent rate capability and preserves 99.9% of its capacitance over 6000 cycles. Significantly, the constructed NiMoO<sub>4</sub>@NiMn-LDH/NF//activated carbon configuration achieves a 1.2 mW h cm<sup>–2</sup> high energy density under a 3.2 mW cm<sup>–2</sup> power density, sustaining 95% superior capacitance retention over 7000 cycles. Our research demonstrates that the NiMoO<sub>4</sub>@NiMn-LDH core–shell nanocomposite offers an excellent and feasible strategy for the energy storage field.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 8","pages":"5110–5122 5110–5122"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porous NiMoO4@NiMn-LDH Core–Shell Nanocomposites Anchored on Nickel Foam: Application in Asymmetric Supercapacitors with a High Specific Capacitance\",\"authors\":\"Yang Yang, Yuwen Ma, Chao Sun, Chaomeng Bu, Yue Yan and Xianfu Li*, \",\"doi\":\"10.1021/acsaem.4c0332010.1021/acsaem.4c03320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Transition-metal oxides (TMOs) exhibit exceptional potential as candidate materials in supercapacitor applications. Nevertheless, their actual performance falls far short of expectations due to challenges such as poor electronic conductivity, insufficient electrochemical durability, and the scarcity of active sites within TMOs. Herein, we successfully synthesized a NiMoO<sub>4</sub> nanorod@NiMn-LDH nanosheet core–shell structure onto nickel foam (NiMoO<sub>4</sub>@NiMn-LDH/NF) via a straightforward two-step hydrothermal process, achieving complementary enhancement in performance. The core–shell architecture effectively shortens ion transport pathways and exposes abundant active sites, which establish a vital basis for boosting the energy storage efficiency of devices. Additionally, the notable synergistic effect among transition-metal ions further boosts the electrochemical performance. Consequently, the NiMoO<sub>4</sub>@NiMn-LDH/NF electrode exhibits an impressive areal capacitance of 9438.4 mF cm<sup>−2</sup> under 2 mA cm<sup>–2</sup>. Moreover, it features pre-eminent rate capability and preserves 99.9% of its capacitance over 6000 cycles. Significantly, the constructed NiMoO<sub>4</sub>@NiMn-LDH/NF//activated carbon configuration achieves a 1.2 mW h cm<sup>–2</sup> high energy density under a 3.2 mW cm<sup>–2</sup> power density, sustaining 95% superior capacitance retention over 7000 cycles. Our research demonstrates that the NiMoO<sub>4</sub>@NiMn-LDH core–shell nanocomposite offers an excellent and feasible strategy for the energy storage field.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 8\",\"pages\":\"5110–5122 5110–5122\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c03320\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c03320","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
过渡金属氧化物(TMOs)作为候选材料在超级电容器应用中表现出非凡的潜力。然而,由于电子导电性差、电化学耐久性不足以及TMOs中活性位点的稀缺性等挑战,它们的实际性能远远低于预期。在此,我们通过简单的两步水热工艺成功地在泡沫镍(NiMoO4@NiMn-LDH/NF)上合成了NiMoO4 nanorod@NiMn-LDH纳米片核壳结构,实现了性能的互补增强。核壳结构有效缩短了离子传输途径,暴露了丰富的活性位点,为提高器件的储能效率奠定了重要基础。此外,过渡金属离子之间显著的协同效应进一步提高了电化学性能。因此,NiMoO4@NiMn-LDH/NF电极在2 mA cm - 2下表现出令人印象深刻的9438.4 mF cm - 2的面电容。此外,它具有卓越的倍率能力,并在6000次循环中保持99.9%的电容。值得注意的是,构建的NiMoO4@NiMn-LDH/NF//活性炭结构在3.2 mW cm-2功率密度下实现了1.2 mW h cm-2的高能量密度,在7000次循环中保持95%的优越电容保持率。我们的研究表明NiMoO4@NiMn-LDH核壳纳米复合材料为储能领域提供了一种优秀而可行的策略。
Porous NiMoO4@NiMn-LDH Core–Shell Nanocomposites Anchored on Nickel Foam: Application in Asymmetric Supercapacitors with a High Specific Capacitance
Transition-metal oxides (TMOs) exhibit exceptional potential as candidate materials in supercapacitor applications. Nevertheless, their actual performance falls far short of expectations due to challenges such as poor electronic conductivity, insufficient electrochemical durability, and the scarcity of active sites within TMOs. Herein, we successfully synthesized a NiMoO4 nanorod@NiMn-LDH nanosheet core–shell structure onto nickel foam (NiMoO4@NiMn-LDH/NF) via a straightforward two-step hydrothermal process, achieving complementary enhancement in performance. The core–shell architecture effectively shortens ion transport pathways and exposes abundant active sites, which establish a vital basis for boosting the energy storage efficiency of devices. Additionally, the notable synergistic effect among transition-metal ions further boosts the electrochemical performance. Consequently, the NiMoO4@NiMn-LDH/NF electrode exhibits an impressive areal capacitance of 9438.4 mF cm−2 under 2 mA cm–2. Moreover, it features pre-eminent rate capability and preserves 99.9% of its capacitance over 6000 cycles. Significantly, the constructed NiMoO4@NiMn-LDH/NF//activated carbon configuration achieves a 1.2 mW h cm–2 high energy density under a 3.2 mW cm–2 power density, sustaining 95% superior capacitance retention over 7000 cycles. Our research demonstrates that the NiMoO4@NiMn-LDH core–shell nanocomposite offers an excellent and feasible strategy for the energy storage field.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.