{"title":"比较MMPDB和REINVENT4生成的分子与药物发现设计团队的想法","authors":"Shan Sun, and , David J. Huggins*, ","doi":"10.1021/acs.jcim.5c0025010.1021/acs.jcim.5c00250","DOIUrl":null,"url":null,"abstract":"<p >This study compares molecules designed by drug discovery project teams from the Sanders Tri-Institutional Therapeutics Discovery Institute with molecules generated by two computational tools: MMPDB and REINVENT4. Seven different test cases with diverse chemotypes are studied in order to explore the potential of these computational tools in complementing human expertise in the early stages of drug discovery. By comparing the molecular structures and properties generated by MMPDB and REINVENT4 to those designed by project design teams, we aim to assess the value of such tools. The results indicate that MMPDB and REINVENT4 cover regions of chemical space larger than those covered by ideas from the drug discovery project teams. However, the chemical spaces covered by the two methods are quite different, and neither method completely covers the chemical space identified by the drug discovery project teams. Thus, the computational methods are complementary to one another and to drug discovery project team ideation. Effective application of generative molecule design tools has the potential to accelerate the identification of novel therapeutic candidates by expanding the chemical space explored during drug discovery and enabling optimal exploration.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 8","pages":"4219–4231 4219–4231"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing Molecules Generated by MMPDB and REINVENT4 with Ideas from Drug Discovery Design Teams\",\"authors\":\"Shan Sun, and , David J. Huggins*, \",\"doi\":\"10.1021/acs.jcim.5c0025010.1021/acs.jcim.5c00250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study compares molecules designed by drug discovery project teams from the Sanders Tri-Institutional Therapeutics Discovery Institute with molecules generated by two computational tools: MMPDB and REINVENT4. Seven different test cases with diverse chemotypes are studied in order to explore the potential of these computational tools in complementing human expertise in the early stages of drug discovery. By comparing the molecular structures and properties generated by MMPDB and REINVENT4 to those designed by project design teams, we aim to assess the value of such tools. The results indicate that MMPDB and REINVENT4 cover regions of chemical space larger than those covered by ideas from the drug discovery project teams. However, the chemical spaces covered by the two methods are quite different, and neither method completely covers the chemical space identified by the drug discovery project teams. Thus, the computational methods are complementary to one another and to drug discovery project team ideation. Effective application of generative molecule design tools has the potential to accelerate the identification of novel therapeutic candidates by expanding the chemical space explored during drug discovery and enabling optimal exploration.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"65 8\",\"pages\":\"4219–4231 4219–4231\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.5c00250\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.5c00250","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Comparing Molecules Generated by MMPDB and REINVENT4 with Ideas from Drug Discovery Design Teams
This study compares molecules designed by drug discovery project teams from the Sanders Tri-Institutional Therapeutics Discovery Institute with molecules generated by two computational tools: MMPDB and REINVENT4. Seven different test cases with diverse chemotypes are studied in order to explore the potential of these computational tools in complementing human expertise in the early stages of drug discovery. By comparing the molecular structures and properties generated by MMPDB and REINVENT4 to those designed by project design teams, we aim to assess the value of such tools. The results indicate that MMPDB and REINVENT4 cover regions of chemical space larger than those covered by ideas from the drug discovery project teams. However, the chemical spaces covered by the two methods are quite different, and neither method completely covers the chemical space identified by the drug discovery project teams. Thus, the computational methods are complementary to one another and to drug discovery project team ideation. Effective application of generative molecule design tools has the potential to accelerate the identification of novel therapeutic candidates by expanding the chemical space explored during drug discovery and enabling optimal exploration.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.