球上不可压缩磁流体力学的时空Lie-Poisson离散化

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Klas Modin, Michael Roop
{"title":"球上不可压缩磁流体力学的时空Lie-Poisson离散化","authors":"Klas Modin, Michael Roop","doi":"10.1093/imanum/draf024","DOIUrl":null,"url":null,"abstract":"We give a structure preserving spatio-temporal discretization for incompressible magnetohydrodynamics (MHD) on the sphere. Discretization in space is based on the theory of geometric quantization, which yields a spatially discretized analogue of the MHD equations as a finite-dimensional Lie–Poisson system on the dual of the magnetic extension Lie algebra $\\mathfrak{f}=\\mathfrak{su}(N)\\ltimes \\mathfrak{su}(N)^{*}$. We also give accompanying structure preserving time discretizations for Lie–Poisson systems on the dual of semidirect product Lie algebras of the form $\\mathfrak{f}=\\mathfrak{g}\\ltimes \\mathfrak{g^{*}}$, where $\\mathfrak{g}$ is a $J$-quadratic Lie algebra. The time integration method is free of computationally costly matrix exponentials. We prove that the full method preserves a modified Lie–Poisson structure and corresponding Casimir functions, and that the modified structure and Casimirs converge to the continuous ones. The method is demonstrated for two models of magnetic fluids: incompressible MHD and Hazeltine’s model.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"26 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-temporal Lie–Poisson discretization for incompressible magnetohydrodynamics on the sphere\",\"authors\":\"Klas Modin, Michael Roop\",\"doi\":\"10.1093/imanum/draf024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a structure preserving spatio-temporal discretization for incompressible magnetohydrodynamics (MHD) on the sphere. Discretization in space is based on the theory of geometric quantization, which yields a spatially discretized analogue of the MHD equations as a finite-dimensional Lie–Poisson system on the dual of the magnetic extension Lie algebra $\\\\mathfrak{f}=\\\\mathfrak{su}(N)\\\\ltimes \\\\mathfrak{su}(N)^{*}$. We also give accompanying structure preserving time discretizations for Lie–Poisson systems on the dual of semidirect product Lie algebras of the form $\\\\mathfrak{f}=\\\\mathfrak{g}\\\\ltimes \\\\mathfrak{g^{*}}$, where $\\\\mathfrak{g}$ is a $J$-quadratic Lie algebra. The time integration method is free of computationally costly matrix exponentials. We prove that the full method preserves a modified Lie–Poisson structure and corresponding Casimir functions, and that the modified structure and Casimirs converge to the continuous ones. The method is demonstrated for two models of magnetic fluids: incompressible MHD and Hazeltine’s model.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf024\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf024","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

给出了球上不可压缩磁流体力学(MHD)的一种结构保持时空离散化方法。空间离散化基于几何量化理论,在磁扩展李代数$\mathfrak{f}=\mathfrak{su}(N)\l乘以\mathfrak{su}(N)^{*}$的对偶上,得到MHD方程作为有限维李泊松系统的空间离散化模拟。我们还给出了半直积李代数对偶上的Lie - poisson系统的伴随结构保持时间离散化,其形式为$\mathfrak{f}=\mathfrak{g}\l乘以\mathfrak{g^{*}}$,其中$\mathfrak{g}$是$J$-二次李代数。时间积分法不需要计算代价高昂的矩阵指数。证明了该方法保留了一个修正的Lie-Poisson结构和相应的Casimir函数,并且修正后的结构和Casimir函数收敛于连续结构。对不可压缩磁流体模型(MHD)和Hazeltine模型(Hazeltine’s model)进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-temporal Lie–Poisson discretization for incompressible magnetohydrodynamics on the sphere
We give a structure preserving spatio-temporal discretization for incompressible magnetohydrodynamics (MHD) on the sphere. Discretization in space is based on the theory of geometric quantization, which yields a spatially discretized analogue of the MHD equations as a finite-dimensional Lie–Poisson system on the dual of the magnetic extension Lie algebra $\mathfrak{f}=\mathfrak{su}(N)\ltimes \mathfrak{su}(N)^{*}$. We also give accompanying structure preserving time discretizations for Lie–Poisson systems on the dual of semidirect product Lie algebras of the form $\mathfrak{f}=\mathfrak{g}\ltimes \mathfrak{g^{*}}$, where $\mathfrak{g}$ is a $J$-quadratic Lie algebra. The time integration method is free of computationally costly matrix exponentials. We prove that the full method preserves a modified Lie–Poisson structure and corresponding Casimir functions, and that the modified structure and Casimirs converge to the continuous ones. The method is demonstrated for two models of magnetic fluids: incompressible MHD and Hazeltine’s model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信