温度和应变率对 Inconel 718 超合金等温低循环疲劳行为的影响:损伤机制、微观结构演变和寿命预测

IF 5.7 2区 材料科学 Q1 ENGINEERING, MECHANICAL
Michal Bartošák, Vladimír Mára, Ivo Šulák
{"title":"温度和应变率对 Inconel 718 超合金等温低循环疲劳行为的影响:损伤机制、微观结构演变和寿命预测","authors":"Michal Bartošák, Vladimír Mára, Ivo Šulák","doi":"10.1016/j.ijfatigue.2025.109005","DOIUrl":null,"url":null,"abstract":"In this article, strain-controlled Low-Cycle Fatigue (LCF) tests were performed on Inconel 718 nickel-based superalloy at temperatures of 300 °C, 650 °C, and 730 °C. The LCF tests were conducted at various mechanical strain amplitudes between <mml:math altimg=\"si416.svg\" display=\"inline\"><mml:mrow><mml:mn>3</mml:mn><mml:mo>.</mml:mo><mml:mn>5</mml:mn><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> and <mml:math altimg=\"si88.svg\" display=\"inline\"><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>, and three different mechanical strain rates: <mml:math altimg=\"si87.svg\" display=\"inline\"><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>/s, <mml:math altimg=\"si263.svg\" display=\"inline\"><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>/s, and <mml:math altimg=\"si88.svg\" display=\"inline\"><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>/s. Cyclic straining resulted in cyclic softening under all investigated loading conditions, with the effect being more significant at higher temperatures. The cyclic softening was attributed to the formation of persistent slip bands and the shearing of coherent precipitates. At 730 °C, <mml:math altimg=\"si33.svg\" display=\"inline\"><mml:mi>δ</mml:mi></mml:math> phase precipitation in LCF tests conducted at low strain rates contributed to additional softening. Investigations into the damage mechanisms revealed that the predominant failure mode shifted from transgranular at 300 °C to intergranular at 650 °C and 730 °C. In addition, fatigue crack initiation sites most frequently involved broken or oxidized carbides. The fatigue lifetime decreased with an increasing temperature and a decreasing strain rate, primarily due to oxidation-assisted intergranular cracking at high temperatures, involving the formation of brittle oxides at grain boundaries. Finally, a multi-mechanism-based damage model was proposed to predict fatigue lifetime, accounting for contributions from oxidation, creep, and fatigue damage. The model exhibited a good correlation between the predicted and the observed lifetimes.","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"7 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of temperature and strain rate on isothermal low-cycle fatigue behaviour of Inconel 718 superalloy: Damage mechanisms, microstructure evolution, and life prediction\",\"authors\":\"Michal Bartošák, Vladimír Mára, Ivo Šulák\",\"doi\":\"10.1016/j.ijfatigue.2025.109005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, strain-controlled Low-Cycle Fatigue (LCF) tests were performed on Inconel 718 nickel-based superalloy at temperatures of 300 °C, 650 °C, and 730 °C. The LCF tests were conducted at various mechanical strain amplitudes between <mml:math altimg=\\\"si416.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>3</mml:mn><mml:mo>.</mml:mo><mml:mn>5</mml:mn><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> and <mml:math altimg=\\\"si88.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>, and three different mechanical strain rates: <mml:math altimg=\\\"si87.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>/s, <mml:math altimg=\\\"si263.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>/s, and <mml:math altimg=\\\"si88.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>/s. Cyclic straining resulted in cyclic softening under all investigated loading conditions, with the effect being more significant at higher temperatures. The cyclic softening was attributed to the formation of persistent slip bands and the shearing of coherent precipitates. At 730 °C, <mml:math altimg=\\\"si33.svg\\\" display=\\\"inline\\\"><mml:mi>δ</mml:mi></mml:math> phase precipitation in LCF tests conducted at low strain rates contributed to additional softening. Investigations into the damage mechanisms revealed that the predominant failure mode shifted from transgranular at 300 °C to intergranular at 650 °C and 730 °C. In addition, fatigue crack initiation sites most frequently involved broken or oxidized carbides. The fatigue lifetime decreased with an increasing temperature and a decreasing strain rate, primarily due to oxidation-assisted intergranular cracking at high temperatures, involving the formation of brittle oxides at grain boundaries. Finally, a multi-mechanism-based damage model was proposed to predict fatigue lifetime, accounting for contributions from oxidation, creep, and fatigue damage. The model exhibited a good correlation between the predicted and the observed lifetimes.\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijfatigue.2025.109005\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijfatigue.2025.109005","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,在300°C、650°C和730°C的温度下,对Inconel 718镍基高温合金进行了应变控制低周疲劳(LCF)试验。LCF试验在3.5×10−3和1×10−2之间的不同应变幅值和1×10−4/s、1×10−3/s和1×10−2/s三种不同的应变速率下进行。在所有加载条件下,循环应变都会导致循环软化,且在较高温度下效果更为显著。循环软化主要是由于持续滑移带的形成和共格相的剪切作用。在730°C时,在低应变速率下进行的LCF试验中δ相析出有助于额外的软化。对损伤机制的研究表明,在300℃时,主要的破坏模式由穿晶转变为650℃和730℃时的沿晶破坏。此外,疲劳裂纹萌生部位通常涉及破碎或氧化的碳化物。疲劳寿命随温度升高和应变速率降低而降低,这主要是由于高温氧化辅助晶间开裂导致晶界处形成脆性氧化物。最后,提出了一个基于多机制的损伤模型来预测疲劳寿命,考虑了氧化、蠕变和疲劳损伤的影响。该模型在预测寿命和观测寿命之间表现出良好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of temperature and strain rate on isothermal low-cycle fatigue behaviour of Inconel 718 superalloy: Damage mechanisms, microstructure evolution, and life prediction
In this article, strain-controlled Low-Cycle Fatigue (LCF) tests were performed on Inconel 718 nickel-based superalloy at temperatures of 300 °C, 650 °C, and 730 °C. The LCF tests were conducted at various mechanical strain amplitudes between 3.5×103 and 1×102, and three different mechanical strain rates: 1×104/s, 1×103/s, and 1×102/s. Cyclic straining resulted in cyclic softening under all investigated loading conditions, with the effect being more significant at higher temperatures. The cyclic softening was attributed to the formation of persistent slip bands and the shearing of coherent precipitates. At 730 °C, δ phase precipitation in LCF tests conducted at low strain rates contributed to additional softening. Investigations into the damage mechanisms revealed that the predominant failure mode shifted from transgranular at 300 °C to intergranular at 650 °C and 730 °C. In addition, fatigue crack initiation sites most frequently involved broken or oxidized carbides. The fatigue lifetime decreased with an increasing temperature and a decreasing strain rate, primarily due to oxidation-assisted intergranular cracking at high temperatures, involving the formation of brittle oxides at grain boundaries. Finally, a multi-mechanism-based damage model was proposed to predict fatigue lifetime, accounting for contributions from oxidation, creep, and fatigue damage. The model exhibited a good correlation between the predicted and the observed lifetimes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fatigue
International Journal of Fatigue 工程技术-材料科学:综合
CiteScore
10.70
自引率
21.70%
发文量
619
审稿时长
58 days
期刊介绍: Typical subjects discussed in International Journal of Fatigue address: Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements) Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions) Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation) Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering Smart materials and structures that can sense and mitigate fatigue degradation Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信