{"title":"温度和应变率对 Inconel 718 超合金等温低循环疲劳行为的影响:损伤机制、微观结构演变和寿命预测","authors":"Michal Bartošák, Vladimír Mára, Ivo Šulák","doi":"10.1016/j.ijfatigue.2025.109005","DOIUrl":null,"url":null,"abstract":"In this article, strain-controlled Low-Cycle Fatigue (LCF) tests were performed on Inconel 718 nickel-based superalloy at temperatures of 300 °C, 650 °C, and 730 °C. The LCF tests were conducted at various mechanical strain amplitudes between <mml:math altimg=\"si416.svg\" display=\"inline\"><mml:mrow><mml:mn>3</mml:mn><mml:mo>.</mml:mo><mml:mn>5</mml:mn><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> and <mml:math altimg=\"si88.svg\" display=\"inline\"><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>, and three different mechanical strain rates: <mml:math altimg=\"si87.svg\" display=\"inline\"><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>/s, <mml:math altimg=\"si263.svg\" display=\"inline\"><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>/s, and <mml:math altimg=\"si88.svg\" display=\"inline\"><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>/s. Cyclic straining resulted in cyclic softening under all investigated loading conditions, with the effect being more significant at higher temperatures. The cyclic softening was attributed to the formation of persistent slip bands and the shearing of coherent precipitates. At 730 °C, <mml:math altimg=\"si33.svg\" display=\"inline\"><mml:mi>δ</mml:mi></mml:math> phase precipitation in LCF tests conducted at low strain rates contributed to additional softening. Investigations into the damage mechanisms revealed that the predominant failure mode shifted from transgranular at 300 °C to intergranular at 650 °C and 730 °C. In addition, fatigue crack initiation sites most frequently involved broken or oxidized carbides. The fatigue lifetime decreased with an increasing temperature and a decreasing strain rate, primarily due to oxidation-assisted intergranular cracking at high temperatures, involving the formation of brittle oxides at grain boundaries. Finally, a multi-mechanism-based damage model was proposed to predict fatigue lifetime, accounting for contributions from oxidation, creep, and fatigue damage. The model exhibited a good correlation between the predicted and the observed lifetimes.","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"7 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of temperature and strain rate on isothermal low-cycle fatigue behaviour of Inconel 718 superalloy: Damage mechanisms, microstructure evolution, and life prediction\",\"authors\":\"Michal Bartošák, Vladimír Mára, Ivo Šulák\",\"doi\":\"10.1016/j.ijfatigue.2025.109005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, strain-controlled Low-Cycle Fatigue (LCF) tests were performed on Inconel 718 nickel-based superalloy at temperatures of 300 °C, 650 °C, and 730 °C. The LCF tests were conducted at various mechanical strain amplitudes between <mml:math altimg=\\\"si416.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>3</mml:mn><mml:mo>.</mml:mo><mml:mn>5</mml:mn><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> and <mml:math altimg=\\\"si88.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>, and three different mechanical strain rates: <mml:math altimg=\\\"si87.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>/s, <mml:math altimg=\\\"si263.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>/s, and <mml:math altimg=\\\"si88.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>/s. Cyclic straining resulted in cyclic softening under all investigated loading conditions, with the effect being more significant at higher temperatures. The cyclic softening was attributed to the formation of persistent slip bands and the shearing of coherent precipitates. At 730 °C, <mml:math altimg=\\\"si33.svg\\\" display=\\\"inline\\\"><mml:mi>δ</mml:mi></mml:math> phase precipitation in LCF tests conducted at low strain rates contributed to additional softening. Investigations into the damage mechanisms revealed that the predominant failure mode shifted from transgranular at 300 °C to intergranular at 650 °C and 730 °C. In addition, fatigue crack initiation sites most frequently involved broken or oxidized carbides. The fatigue lifetime decreased with an increasing temperature and a decreasing strain rate, primarily due to oxidation-assisted intergranular cracking at high temperatures, involving the formation of brittle oxides at grain boundaries. Finally, a multi-mechanism-based damage model was proposed to predict fatigue lifetime, accounting for contributions from oxidation, creep, and fatigue damage. The model exhibited a good correlation between the predicted and the observed lifetimes.\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijfatigue.2025.109005\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijfatigue.2025.109005","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effects of temperature and strain rate on isothermal low-cycle fatigue behaviour of Inconel 718 superalloy: Damage mechanisms, microstructure evolution, and life prediction
In this article, strain-controlled Low-Cycle Fatigue (LCF) tests were performed on Inconel 718 nickel-based superalloy at temperatures of 300 °C, 650 °C, and 730 °C. The LCF tests were conducted at various mechanical strain amplitudes between 3.5×10−3 and 1×10−2, and three different mechanical strain rates: 1×10−4/s, 1×10−3/s, and 1×10−2/s. Cyclic straining resulted in cyclic softening under all investigated loading conditions, with the effect being more significant at higher temperatures. The cyclic softening was attributed to the formation of persistent slip bands and the shearing of coherent precipitates. At 730 °C, δ phase precipitation in LCF tests conducted at low strain rates contributed to additional softening. Investigations into the damage mechanisms revealed that the predominant failure mode shifted from transgranular at 300 °C to intergranular at 650 °C and 730 °C. In addition, fatigue crack initiation sites most frequently involved broken or oxidized carbides. The fatigue lifetime decreased with an increasing temperature and a decreasing strain rate, primarily due to oxidation-assisted intergranular cracking at high temperatures, involving the formation of brittle oxides at grain boundaries. Finally, a multi-mechanism-based damage model was proposed to predict fatigue lifetime, accounting for contributions from oxidation, creep, and fatigue damage. The model exhibited a good correlation between the predicted and the observed lifetimes.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.