高精度信息检索快速临床指南更新

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Florian Borchert, Paul Wullenweber, Annika Oeser, Nina Kreuzberger, Torsten Karge, Thomas Langer, Nicole Skoetz, Lothar H. Wieler, Matthieu-P. Schapranow, Bert Arnrich
{"title":"高精度信息检索快速临床指南更新","authors":"Florian Borchert, Paul Wullenweber, Annika Oeser, Nina Kreuzberger, Torsten Karge, Thomas Langer, Nicole Skoetz, Lothar H. Wieler, Matthieu-P. Schapranow, Bert Arnrich","doi":"10.1038/s41746-025-01648-5","DOIUrl":null,"url":null,"abstract":"<p>Delays in translating new medical evidence into clinical practice hinder patient access to the best available treatments. Our data reveals an average delay of nine years from the initiation of human research to its adoption in clinical guidelines, with 1.7–3.0 years lost between trial publication and guideline updates. A substantial part of these delays stems from slow, manual processes in updating clinical guidelines, which rely on time-intensive evidence synthesis workflows. The Next Generation Evidence (NGE) system addresses this challenge by harnessing state-of-the-art biomedical Natural Language Processing (NLP) methods. This novel system integrates diverse evidence sources, such as clinical trial reports and digital guidelines, enabling automated, data-driven analyses of the time it takes for research findings to inform clinical practice. Moreover, the NGE system provides precision-focused literature search filters tailored specifically for guideline maintenance. In benchmarking against two German oncology guidelines, these filters demonstrate exceptional precision in identifying pivotal publications for guideline updates.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"65 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-precision information retrieval for rapid clinical guideline updates\",\"authors\":\"Florian Borchert, Paul Wullenweber, Annika Oeser, Nina Kreuzberger, Torsten Karge, Thomas Langer, Nicole Skoetz, Lothar H. Wieler, Matthieu-P. Schapranow, Bert Arnrich\",\"doi\":\"10.1038/s41746-025-01648-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Delays in translating new medical evidence into clinical practice hinder patient access to the best available treatments. Our data reveals an average delay of nine years from the initiation of human research to its adoption in clinical guidelines, with 1.7–3.0 years lost between trial publication and guideline updates. A substantial part of these delays stems from slow, manual processes in updating clinical guidelines, which rely on time-intensive evidence synthesis workflows. The Next Generation Evidence (NGE) system addresses this challenge by harnessing state-of-the-art biomedical Natural Language Processing (NLP) methods. This novel system integrates diverse evidence sources, such as clinical trial reports and digital guidelines, enabling automated, data-driven analyses of the time it takes for research findings to inform clinical practice. Moreover, the NGE system provides precision-focused literature search filters tailored specifically for guideline maintenance. In benchmarking against two German oncology guidelines, these filters demonstrate exceptional precision in identifying pivotal publications for guideline updates.</p>\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41746-025-01648-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01648-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

将新的医学证据转化为临床实践的延误阻碍了患者获得现有的最佳治疗。我们的数据显示,从人体研究开始到临床指南采用平均延迟9年,从试验发表到指南更新之间平均延迟1.7-3.0年。这些延误的很大一部分源于更新临床指南的缓慢手动过程,这些过程依赖于时间密集的证据合成工作流程。下一代证据(NGE)系统通过利用最先进的生物医学自然语言处理(NLP)方法来解决这一挑战。这个新颖的系统集成了各种证据来源,如临床试验报告和数字指南,实现了对研究结果为临床实践提供信息所需时间的自动化数据驱动分析。此外,NGE系统提供了专门为指南维护量身定制的以精度为中心的文献搜索过滤器。在两个德国肿瘤学指南的基准测试中,这些过滤器在识别指南更新的关键出版物方面表现出卓越的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-precision information retrieval for rapid clinical guideline updates

High-precision information retrieval for rapid clinical guideline updates

Delays in translating new medical evidence into clinical practice hinder patient access to the best available treatments. Our data reveals an average delay of nine years from the initiation of human research to its adoption in clinical guidelines, with 1.7–3.0 years lost between trial publication and guideline updates. A substantial part of these delays stems from slow, manual processes in updating clinical guidelines, which rely on time-intensive evidence synthesis workflows. The Next Generation Evidence (NGE) system addresses this challenge by harnessing state-of-the-art biomedical Natural Language Processing (NLP) methods. This novel system integrates diverse evidence sources, such as clinical trial reports and digital guidelines, enabling automated, data-driven analyses of the time it takes for research findings to inform clinical practice. Moreover, the NGE system provides precision-focused literature search filters tailored specifically for guideline maintenance. In benchmarking against two German oncology guidelines, these filters demonstrate exceptional precision in identifying pivotal publications for guideline updates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信