{"title":"部分信息线性二次型随机最优控制问题的弱闭环可解性","authors":"Xun Li, Guangchen Wang, Jie Xiong, Heng Zhang","doi":"10.1007/s00245-025-10262-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates a linear quadratic stochastic optimal control (LQSOC) problem with partial information. Firstly, by introducing two Riccati equations and a backward stochastic differential equation (BSDE), we solve this LQSOC problem under standard positive semidefinite assumptions. Secondly, by means of a perturbation approach, we study open-loop solvability of this problem when the weighting matrices in the cost functional are indefinite. Thirdly, we investigate weak closed-loop solvability of this problem and prove the equivalence between open-loop and weak closed-loop solvabilities. Finally, we give an example to illustrate the way for obtaining a weak closed-loop optimal strategy.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"91 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak Closed-Loop Solvability of Linear Quadratic Stochastic Optimal Control Problems with Partial Information\",\"authors\":\"Xun Li, Guangchen Wang, Jie Xiong, Heng Zhang\",\"doi\":\"10.1007/s00245-025-10262-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates a linear quadratic stochastic optimal control (LQSOC) problem with partial information. Firstly, by introducing two Riccati equations and a backward stochastic differential equation (BSDE), we solve this LQSOC problem under standard positive semidefinite assumptions. Secondly, by means of a perturbation approach, we study open-loop solvability of this problem when the weighting matrices in the cost functional are indefinite. Thirdly, we investigate weak closed-loop solvability of this problem and prove the equivalence between open-loop and weak closed-loop solvabilities. Finally, we give an example to illustrate the way for obtaining a weak closed-loop optimal strategy.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"91 3\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-025-10262-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10262-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Weak Closed-Loop Solvability of Linear Quadratic Stochastic Optimal Control Problems with Partial Information
This paper investigates a linear quadratic stochastic optimal control (LQSOC) problem with partial information. Firstly, by introducing two Riccati equations and a backward stochastic differential equation (BSDE), we solve this LQSOC problem under standard positive semidefinite assumptions. Secondly, by means of a perturbation approach, we study open-loop solvability of this problem when the weighting matrices in the cost functional are indefinite. Thirdly, we investigate weak closed-loop solvability of this problem and prove the equivalence between open-loop and weak closed-loop solvabilities. Finally, we give an example to illustrate the way for obtaining a weak closed-loop optimal strategy.
期刊介绍:
The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.