{"title":"人工智能生成假新闻的全局-局部集成检测器","authors":"Yujia Wang;Wen Long","doi":"10.1109/ACCESS.2025.3562154","DOIUrl":null,"url":null,"abstract":"With the continuous evolution of advanced large language models like GPT, the proliferation of AI-generated fake news presents growing challenges to information dissemination. Traditional text classification methods face difficulties in accurately detecting such content, due to their limited capacity to differentiate between authentic and fabricated news. To address this issue, this paper introduces a novel “Global-Local News Detection Model”, which combines BERT, Bidirectional Long Short-Term Memory (BiLSTM) networks, Text Convolutional Neural Networks (TextCNN), and attention mechanisms to enhance the detection of AI-generated fake news. A new dataset, generated using GPT-4 and covering 42 news categories, was developed to serve as a comprehensive and diverse foundation for training and evaluating the model. Experimental results indicate that the proposed model achieves an accuracy and F1 score of 0.82, surpassing traditional approaches.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"69779-69789"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10969761","citationCount":"0","resultStr":"{\"title\":\"Global-Local Ensemble Detector for AI-Generated Fake News\",\"authors\":\"Yujia Wang;Wen Long\",\"doi\":\"10.1109/ACCESS.2025.3562154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continuous evolution of advanced large language models like GPT, the proliferation of AI-generated fake news presents growing challenges to information dissemination. Traditional text classification methods face difficulties in accurately detecting such content, due to their limited capacity to differentiate between authentic and fabricated news. To address this issue, this paper introduces a novel “Global-Local News Detection Model”, which combines BERT, Bidirectional Long Short-Term Memory (BiLSTM) networks, Text Convolutional Neural Networks (TextCNN), and attention mechanisms to enhance the detection of AI-generated fake news. A new dataset, generated using GPT-4 and covering 42 news categories, was developed to serve as a comprehensive and diverse foundation for training and evaluating the model. Experimental results indicate that the proposed model achieves an accuracy and F1 score of 0.82, surpassing traditional approaches.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"69779-69789\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10969761\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10969761/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10969761/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Global-Local Ensemble Detector for AI-Generated Fake News
With the continuous evolution of advanced large language models like GPT, the proliferation of AI-generated fake news presents growing challenges to information dissemination. Traditional text classification methods face difficulties in accurately detecting such content, due to their limited capacity to differentiate between authentic and fabricated news. To address this issue, this paper introduces a novel “Global-Local News Detection Model”, which combines BERT, Bidirectional Long Short-Term Memory (BiLSTM) networks, Text Convolutional Neural Networks (TextCNN), and attention mechanisms to enhance the detection of AI-generated fake news. A new dataset, generated using GPT-4 and covering 42 news categories, was developed to serve as a comprehensive and diverse foundation for training and evaluating the model. Experimental results indicate that the proposed model achieves an accuracy and F1 score of 0.82, surpassing traditional approaches.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.