{"title":"维持随机化疗计划的公平性","authors":"Batuhan Çelik , Serhat Gul , Özlem Karsu","doi":"10.1016/j.omega.2025.103338","DOIUrl":null,"url":null,"abstract":"<div><div>Chemotherapy scheduling is hard to manage under uncertainty in infusion durations, and focusing on expected performance measure values may lead to unfavorable outcomes for some patients. In this study, we aim to design daily patient appointment schedules considering a fair environment regarding patient waiting times. We propose using a metric that encourages fairness and efficiency in waiting time allocations. To optimize this metric, we formulate a two-stage stochastic mixed-integer nonlinear programming model. We employ a binary search algorithm to identify the optimal schedule, and then propose a modified binary search algorithm (MBSA) to enhance computational capability. Moreover, to address stochastic feasibility problems at each MBSA iteration, we introduce a novel reduce-and-augment algorithm that utilizes scenario set reduction and augmentation methods. We use real data from a major oncology hospital to show the efficacy of MBSA. We compare the schedules identified by MBSA with both the baseline schedules from the oncology hospital and those generated by commonly employed scheduling heuristics. Finally, we highlight the significance of considering uncertainty in infusion durations to maintain fairness while creating appointment schedules.</div></div>","PeriodicalId":19529,"journal":{"name":"Omega-international Journal of Management Science","volume":"137 ","pages":"Article 103338"},"PeriodicalIF":6.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maintaining fairness in stochastic chemotherapy scheduling\",\"authors\":\"Batuhan Çelik , Serhat Gul , Özlem Karsu\",\"doi\":\"10.1016/j.omega.2025.103338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chemotherapy scheduling is hard to manage under uncertainty in infusion durations, and focusing on expected performance measure values may lead to unfavorable outcomes for some patients. In this study, we aim to design daily patient appointment schedules considering a fair environment regarding patient waiting times. We propose using a metric that encourages fairness and efficiency in waiting time allocations. To optimize this metric, we formulate a two-stage stochastic mixed-integer nonlinear programming model. We employ a binary search algorithm to identify the optimal schedule, and then propose a modified binary search algorithm (MBSA) to enhance computational capability. Moreover, to address stochastic feasibility problems at each MBSA iteration, we introduce a novel reduce-and-augment algorithm that utilizes scenario set reduction and augmentation methods. We use real data from a major oncology hospital to show the efficacy of MBSA. We compare the schedules identified by MBSA with both the baseline schedules from the oncology hospital and those generated by commonly employed scheduling heuristics. Finally, we highlight the significance of considering uncertainty in infusion durations to maintain fairness while creating appointment schedules.</div></div>\",\"PeriodicalId\":19529,\"journal\":{\"name\":\"Omega-international Journal of Management Science\",\"volume\":\"137 \",\"pages\":\"Article 103338\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Omega-international Journal of Management Science\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0305048325000647\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Omega-international Journal of Management Science","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305048325000647","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
Maintaining fairness in stochastic chemotherapy scheduling
Chemotherapy scheduling is hard to manage under uncertainty in infusion durations, and focusing on expected performance measure values may lead to unfavorable outcomes for some patients. In this study, we aim to design daily patient appointment schedules considering a fair environment regarding patient waiting times. We propose using a metric that encourages fairness and efficiency in waiting time allocations. To optimize this metric, we formulate a two-stage stochastic mixed-integer nonlinear programming model. We employ a binary search algorithm to identify the optimal schedule, and then propose a modified binary search algorithm (MBSA) to enhance computational capability. Moreover, to address stochastic feasibility problems at each MBSA iteration, we introduce a novel reduce-and-augment algorithm that utilizes scenario set reduction and augmentation methods. We use real data from a major oncology hospital to show the efficacy of MBSA. We compare the schedules identified by MBSA with both the baseline schedules from the oncology hospital and those generated by commonly employed scheduling heuristics. Finally, we highlight the significance of considering uncertainty in infusion durations to maintain fairness while creating appointment schedules.
期刊介绍:
Omega reports on developments in management, including the latest research results and applications. Original contributions and review articles describe the state of the art in specific fields or functions of management, while there are shorter critical assessments of particular management techniques. Other features of the journal are the "Memoranda" section for short communications and "Feedback", a correspondence column. Omega is both stimulating reading and an important source for practising managers, specialists in management services, operational research workers and management scientists, management consultants, academics, students and research personnel throughout the world. The material published is of high quality and relevance, written in a manner which makes it accessible to all of this wide-ranging readership. Preference will be given to papers with implications to the practice of management. Submissions of purely theoretical papers are discouraged. The review of material for publication in the journal reflects this aim.