Arjun Rachana Harish , Zhaolin Yuan , Ming Li , Hongxia Yang , George Q. Huang
{"title":"通过生成性工业大模特群聊协同服装设计","authors":"Arjun Rachana Harish , Zhaolin Yuan , Ming Li , Hongxia Yang , George Q. Huang","doi":"10.1016/j.aei.2025.103366","DOIUrl":null,"url":null,"abstract":"<div><div>The collaborative garment designing lifecycle involves stages such as designing, styling, and patterning. Some of these stages can be partially or fully automated using industrial large models (LMs), such as generative and large language models. The key to quick and cost-effective order fulfillment is the orchestration of group interactions, or a group chat, between the stakeholders and LMs in garment design. However, certain unaddressed aspects, such as knowledge retention, generalization, and complexity of group interaction, are critical to realizing group chat for garment design. This study proposes a framework called ChatFashion for group chat in garment design. Transformer, a core construct of the proposed framework, orchestrates interaction among stakeholders and industrial LMs. It undergoes an evolution with the intelligence it picks up from its interaction with diverse stakeholders and industrial LMs, allowing it to act as a one-stop solution for multidisciplinary design needs. This study contributes to theory in the following aspects. First, it proposes transformers to eliminate concerns about knowledge retention by industrial LMs. Second, while other studies focus on the benefits of industrial LMs to simplify individual stages in garment design, this study introduces the design and demonstration of a ChatFashion framework for collaborative garment designing using industrial LMs. Finally, this study advances the literature on prompt engineering of industrial LMs by utilizing collaborative learning (or models learning from each other) to capture and orchestrate the group chat among stakeholders, signifying its practicality and value for research in garment design.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"65 ","pages":"Article 103366"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative garment design through group chatting with generative industrial large models\",\"authors\":\"Arjun Rachana Harish , Zhaolin Yuan , Ming Li , Hongxia Yang , George Q. Huang\",\"doi\":\"10.1016/j.aei.2025.103366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The collaborative garment designing lifecycle involves stages such as designing, styling, and patterning. Some of these stages can be partially or fully automated using industrial large models (LMs), such as generative and large language models. The key to quick and cost-effective order fulfillment is the orchestration of group interactions, or a group chat, between the stakeholders and LMs in garment design. However, certain unaddressed aspects, such as knowledge retention, generalization, and complexity of group interaction, are critical to realizing group chat for garment design. This study proposes a framework called ChatFashion for group chat in garment design. Transformer, a core construct of the proposed framework, orchestrates interaction among stakeholders and industrial LMs. It undergoes an evolution with the intelligence it picks up from its interaction with diverse stakeholders and industrial LMs, allowing it to act as a one-stop solution for multidisciplinary design needs. This study contributes to theory in the following aspects. First, it proposes transformers to eliminate concerns about knowledge retention by industrial LMs. Second, while other studies focus on the benefits of industrial LMs to simplify individual stages in garment design, this study introduces the design and demonstration of a ChatFashion framework for collaborative garment designing using industrial LMs. Finally, this study advances the literature on prompt engineering of industrial LMs by utilizing collaborative learning (or models learning from each other) to capture and orchestrate the group chat among stakeholders, signifying its practicality and value for research in garment design.</div></div>\",\"PeriodicalId\":50941,\"journal\":{\"name\":\"Advanced Engineering Informatics\",\"volume\":\"65 \",\"pages\":\"Article 103366\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1474034625002599\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034625002599","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Collaborative garment design through group chatting with generative industrial large models
The collaborative garment designing lifecycle involves stages such as designing, styling, and patterning. Some of these stages can be partially or fully automated using industrial large models (LMs), such as generative and large language models. The key to quick and cost-effective order fulfillment is the orchestration of group interactions, or a group chat, between the stakeholders and LMs in garment design. However, certain unaddressed aspects, such as knowledge retention, generalization, and complexity of group interaction, are critical to realizing group chat for garment design. This study proposes a framework called ChatFashion for group chat in garment design. Transformer, a core construct of the proposed framework, orchestrates interaction among stakeholders and industrial LMs. It undergoes an evolution with the intelligence it picks up from its interaction with diverse stakeholders and industrial LMs, allowing it to act as a one-stop solution for multidisciplinary design needs. This study contributes to theory in the following aspects. First, it proposes transformers to eliminate concerns about knowledge retention by industrial LMs. Second, while other studies focus on the benefits of industrial LMs to simplify individual stages in garment design, this study introduces the design and demonstration of a ChatFashion framework for collaborative garment designing using industrial LMs. Finally, this study advances the literature on prompt engineering of industrial LMs by utilizing collaborative learning (or models learning from each other) to capture and orchestrate the group chat among stakeholders, signifying its practicality and value for research in garment design.
期刊介绍:
Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.