sleeppeegpy:一个基于python的软件集成包,用于组织睡眠脑电图数据的预处理、分析和可视化

IF 7 2区 医学 Q1 BIOLOGY
R. Falach , G. Belonosov , J.F. Schmidig , M. Aderka , V. Zhelezniakov , R. Shani-Hershkovich , E. Bar , Y. Nir
{"title":"sleeppeegpy:一个基于python的软件集成包,用于组织睡眠脑电图数据的预处理、分析和可视化","authors":"R. Falach ,&nbsp;G. Belonosov ,&nbsp;J.F. Schmidig ,&nbsp;M. Aderka ,&nbsp;V. Zhelezniakov ,&nbsp;R. Shani-Hershkovich ,&nbsp;E. Bar ,&nbsp;Y. Nir","doi":"10.1016/j.compbiomed.2025.110232","DOIUrl":null,"url":null,"abstract":"<div><div>Sleep research uses electroencephalography (EEG) to infer brain activity in health and disease. Beyond standard sleep scoring, there is growing interest in advanced EEG analysis that requires extensive preprocessing to improve the signal-to-noise ratio and specialized analysis algorithms. While many EEG software packages exist, sleep research has unique needs (e.g., specific artifacts, event detection). Currently, sleep investigators use different libraries for specific tasks in a ‘fragmented’ configuration that is inefficient, prone to errors, and requires the learning of multiple software environments. This complexity creates a barrier for beginners. Here, we present SleepEEGpy, an open-source Python package that simplifies sleep EEG preprocessing and analysis. SleepEEGpy builds on MNE-Python, PyPREP, YASA, and SpecParam to offer an all-in-one, beginner-friendly package for comprehensive sleep EEG research, including (i) cleaning, (ii) independent component analysis, (iii) sleep event detection, (iv) spectral feature analysis, and visualization tools. A dedicated dashboard provides an overview to evaluate data and preprocessing, serving as an initial step prior to detailed analysis. We demonstrate SleepEEGpy's functionalities using overnight high-density EEG data from healthy participants, revealing characteristic activity signatures typical of each vigilance state: alpha oscillations in wakefulness, spindles and slow waves in NREM sleep, and theta activity in REM sleep. We hope that this software will be adopted and further developed by the sleep research community, and constitute a useful entry point tool for beginners in sleep EEG research.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"192 ","pages":"Article 110232"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SleepEEGpy: a Python-based software integration package to organize preprocessing, analysis, and visualization of sleep EEG data\",\"authors\":\"R. Falach ,&nbsp;G. Belonosov ,&nbsp;J.F. Schmidig ,&nbsp;M. Aderka ,&nbsp;V. Zhelezniakov ,&nbsp;R. Shani-Hershkovich ,&nbsp;E. Bar ,&nbsp;Y. Nir\",\"doi\":\"10.1016/j.compbiomed.2025.110232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sleep research uses electroencephalography (EEG) to infer brain activity in health and disease. Beyond standard sleep scoring, there is growing interest in advanced EEG analysis that requires extensive preprocessing to improve the signal-to-noise ratio and specialized analysis algorithms. While many EEG software packages exist, sleep research has unique needs (e.g., specific artifacts, event detection). Currently, sleep investigators use different libraries for specific tasks in a ‘fragmented’ configuration that is inefficient, prone to errors, and requires the learning of multiple software environments. This complexity creates a barrier for beginners. Here, we present SleepEEGpy, an open-source Python package that simplifies sleep EEG preprocessing and analysis. SleepEEGpy builds on MNE-Python, PyPREP, YASA, and SpecParam to offer an all-in-one, beginner-friendly package for comprehensive sleep EEG research, including (i) cleaning, (ii) independent component analysis, (iii) sleep event detection, (iv) spectral feature analysis, and visualization tools. A dedicated dashboard provides an overview to evaluate data and preprocessing, serving as an initial step prior to detailed analysis. We demonstrate SleepEEGpy's functionalities using overnight high-density EEG data from healthy participants, revealing characteristic activity signatures typical of each vigilance state: alpha oscillations in wakefulness, spindles and slow waves in NREM sleep, and theta activity in REM sleep. We hope that this software will be adopted and further developed by the sleep research community, and constitute a useful entry point tool for beginners in sleep EEG research.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"192 \",\"pages\":\"Article 110232\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482525005839\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525005839","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

睡眠研究使用脑电图(EEG)来推断健康和疾病状态下的大脑活动。除了标准的睡眠评分,人们对高级脑电图分析的兴趣越来越大,这需要大量的预处理来提高信噪比和专门的分析算法。虽然存在许多EEG软件包,但睡眠研究有其独特的需求(例如,特定的人工制品,事件检测)。目前,睡眠研究人员在“碎片化”的配置中使用不同的库来完成特定的任务,这种配置效率低下,容易出错,并且需要学习多种软件环境。这种复杂性给初学者造成了障碍。在这里,我们介绍了sleeppeegpy,一个开源的Python包,它简化了睡眠EEG的预处理和分析。sleeppeegpy建立在MNE-Python、PyPREP、YASA和SpecParam的基础上,为全面的睡眠脑电图研究提供了一个一体化的、初学者友好的软件包,包括(i)清洁、(ii)独立成分分析、(iii)睡眠事件检测、(iv)光谱特征分析和可视化工具。专用仪表板提供了评估数据和预处理的概述,作为详细分析之前的初始步骤。我们使用健康参与者的夜间高密度脑电图数据来证明sleeppeegpy的功能,揭示了每个警戒状态的典型特征活动特征:清醒时的α振荡,非快速眼动睡眠时的纺锤波和慢波,以及快速眼动睡眠时的θ波活动。我们希望该软件能被睡眠研究界所采用和进一步发展,为睡眠脑电图研究的初学者提供一个有用的入门工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SleepEEGpy: a Python-based software integration package to organize preprocessing, analysis, and visualization of sleep EEG data
Sleep research uses electroencephalography (EEG) to infer brain activity in health and disease. Beyond standard sleep scoring, there is growing interest in advanced EEG analysis that requires extensive preprocessing to improve the signal-to-noise ratio and specialized analysis algorithms. While many EEG software packages exist, sleep research has unique needs (e.g., specific artifacts, event detection). Currently, sleep investigators use different libraries for specific tasks in a ‘fragmented’ configuration that is inefficient, prone to errors, and requires the learning of multiple software environments. This complexity creates a barrier for beginners. Here, we present SleepEEGpy, an open-source Python package that simplifies sleep EEG preprocessing and analysis. SleepEEGpy builds on MNE-Python, PyPREP, YASA, and SpecParam to offer an all-in-one, beginner-friendly package for comprehensive sleep EEG research, including (i) cleaning, (ii) independent component analysis, (iii) sleep event detection, (iv) spectral feature analysis, and visualization tools. A dedicated dashboard provides an overview to evaluate data and preprocessing, serving as an initial step prior to detailed analysis. We demonstrate SleepEEGpy's functionalities using overnight high-density EEG data from healthy participants, revealing characteristic activity signatures typical of each vigilance state: alpha oscillations in wakefulness, spindles and slow waves in NREM sleep, and theta activity in REM sleep. We hope that this software will be adopted and further developed by the sleep research community, and constitute a useful entry point tool for beginners in sleep EEG research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信