{"title":"铅暴露后小蝌蚪肠道微生物群落变化的宏基因组学研究","authors":"Yanjiao Song , Lod Fabuleux Tresor Baniakina , Ling Jiang , Lihong Chai","doi":"10.1016/j.cbd.2025.101522","DOIUrl":null,"url":null,"abstract":"<div><div>Lead (Pb), a prevalent heavy metal contaminant in aquatic environments, has complex effects on the gut microbiome function of aquatic animals. In this study, metagenomic analysis of <em>Bufo gargarizans</em> tadpoles was carried out following Pb exposure. Moreover, histological analysis was performed on the intestines. The results showed that Pb exposure induced histological damage to the intestinal epithelium. Significant differences in microbial abundance and function were detected in the 200 μg/L Pb group compared to the control group. Specifically, an increase in <em>Bosea</em> and <em>Klebsiella</em> was noted at 200 μg/L Pb, which potentially could induce inflammation in tadpoles. Notably, the decrease in the abundance of glycoside hydrolases subsequent to exposure to 200 μg/L Pb is likely to attenuate carbohydrate metabolism. Furthermore, increased fluoroquinolone-related antibiotic resistance genes (ARGs), phenolic-related ARGs, and iron uptake systems following 200 μg/L Pb exposure might heighten the disease risk for tadpoles. These discoveries augment our comprehension of the influences of Pb on the intestinal well-being of amphibians and offer valuable insights for further assessment of the ecological risks that Pb poses to amphibians.</div></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":"55 ","pages":"Article 101522"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metagenomic insights into the alterations of gut microbial community in Bufo gargarizans tadpoles following lead exposure\",\"authors\":\"Yanjiao Song , Lod Fabuleux Tresor Baniakina , Ling Jiang , Lihong Chai\",\"doi\":\"10.1016/j.cbd.2025.101522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lead (Pb), a prevalent heavy metal contaminant in aquatic environments, has complex effects on the gut microbiome function of aquatic animals. In this study, metagenomic analysis of <em>Bufo gargarizans</em> tadpoles was carried out following Pb exposure. Moreover, histological analysis was performed on the intestines. The results showed that Pb exposure induced histological damage to the intestinal epithelium. Significant differences in microbial abundance and function were detected in the 200 μg/L Pb group compared to the control group. Specifically, an increase in <em>Bosea</em> and <em>Klebsiella</em> was noted at 200 μg/L Pb, which potentially could induce inflammation in tadpoles. Notably, the decrease in the abundance of glycoside hydrolases subsequent to exposure to 200 μg/L Pb is likely to attenuate carbohydrate metabolism. Furthermore, increased fluoroquinolone-related antibiotic resistance genes (ARGs), phenolic-related ARGs, and iron uptake systems following 200 μg/L Pb exposure might heighten the disease risk for tadpoles. These discoveries augment our comprehension of the influences of Pb on the intestinal well-being of amphibians and offer valuable insights for further assessment of the ecological risks that Pb poses to amphibians.</div></div>\",\"PeriodicalId\":55235,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology D-Genomics & Proteomics\",\"volume\":\"55 \",\"pages\":\"Article 101522\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology D-Genomics & Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1744117X2500111X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X2500111X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Metagenomic insights into the alterations of gut microbial community in Bufo gargarizans tadpoles following lead exposure
Lead (Pb), a prevalent heavy metal contaminant in aquatic environments, has complex effects on the gut microbiome function of aquatic animals. In this study, metagenomic analysis of Bufo gargarizans tadpoles was carried out following Pb exposure. Moreover, histological analysis was performed on the intestines. The results showed that Pb exposure induced histological damage to the intestinal epithelium. Significant differences in microbial abundance and function were detected in the 200 μg/L Pb group compared to the control group. Specifically, an increase in Bosea and Klebsiella was noted at 200 μg/L Pb, which potentially could induce inflammation in tadpoles. Notably, the decrease in the abundance of glycoside hydrolases subsequent to exposure to 200 μg/L Pb is likely to attenuate carbohydrate metabolism. Furthermore, increased fluoroquinolone-related antibiotic resistance genes (ARGs), phenolic-related ARGs, and iron uptake systems following 200 μg/L Pb exposure might heighten the disease risk for tadpoles. These discoveries augment our comprehension of the influences of Pb on the intestinal well-being of amphibians and offer valuable insights for further assessment of the ecological risks that Pb poses to amphibians.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.