时间包络分析:一种有效地将时间序列纳入数据包络分析的新方法

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Madjid Tavana , Mehdi Toloo , Francisco J. Santos-Arteaga , Hajar Farnoudkia , Violeta Cvetkoska
{"title":"时间包络分析:一种有效地将时间序列纳入数据包络分析的新方法","authors":"Madjid Tavana ,&nbsp;Mehdi Toloo ,&nbsp;Francisco J. Santos-Arteaga ,&nbsp;Hajar Farnoudkia ,&nbsp;Violeta Cvetkoska","doi":"10.1016/j.eswa.2025.127791","DOIUrl":null,"url":null,"abstract":"<div><div>Data envelopment analysis (DEA) is a non-parametric tool for empirically evaluating the relative efficiency of homogeneous organizational units, i.e., decision-making units, by estimating the production frontiers. Time series analysis is a statistical technique that considers a series of data collected chronologically over time intervals. This study introduces a three-stage method, Time Envelopment Analysis (TEA), to effectively integrate time series analysis into DEA. The three-stage method includes a first-order autoregressive (AR(1)) model followed by DEA and ordinary least squares (OLS). The performance of the TEA method with four different values for the AR(1) parameters is compared with the DEA-OLS procedure using extensive Monte Carlo simulations. The simulation results show that the TEA method outperforms the DEA-OLS procedure. We further demonstrate that TEA is more accurate when the autoregressive parameter is smaller, particularly in scenarios defined by a progressive decrease in the impact of technical inefficiencies. We evaluate the proposed TEA method using a real-world healthcare dataset from 63 countries by estimating the effect of contextual variables on each country’s productivity.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"282 ","pages":"Article 127791"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time envelopment analysis: A new method for effectively incorporating time series in data envelopment analysis\",\"authors\":\"Madjid Tavana ,&nbsp;Mehdi Toloo ,&nbsp;Francisco J. Santos-Arteaga ,&nbsp;Hajar Farnoudkia ,&nbsp;Violeta Cvetkoska\",\"doi\":\"10.1016/j.eswa.2025.127791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Data envelopment analysis (DEA) is a non-parametric tool for empirically evaluating the relative efficiency of homogeneous organizational units, i.e., decision-making units, by estimating the production frontiers. Time series analysis is a statistical technique that considers a series of data collected chronologically over time intervals. This study introduces a three-stage method, Time Envelopment Analysis (TEA), to effectively integrate time series analysis into DEA. The three-stage method includes a first-order autoregressive (AR(1)) model followed by DEA and ordinary least squares (OLS). The performance of the TEA method with four different values for the AR(1) parameters is compared with the DEA-OLS procedure using extensive Monte Carlo simulations. The simulation results show that the TEA method outperforms the DEA-OLS procedure. We further demonstrate that TEA is more accurate when the autoregressive parameter is smaller, particularly in scenarios defined by a progressive decrease in the impact of technical inefficiencies. We evaluate the proposed TEA method using a real-world healthcare dataset from 63 countries by estimating the effect of contextual variables on each country’s productivity.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"282 \",\"pages\":\"Article 127791\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417425014137\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425014137","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

数据包络分析(DEA)是一种非参数工具,通过估计生产边界来经验评价同质组织单位(即决策单位)的相对效率。时间序列分析是一种统计技术,它考虑按时间间隔按时间顺序收集的一系列数据。本研究引入时间包络分析(TEA)三阶段方法,将时间序列分析有效地整合到DEA中。三阶段方法包括一阶自回归(AR(1))模型,其次是DEA和普通最小二乘(OLS)。TEA方法具有四个不同的AR(1)参数值,使用广泛的蒙特卡罗模拟与DEA-OLS过程进行了比较。仿真结果表明,TEA方法优于DEA-OLS方法。我们进一步证明,当自回归参数较小时,TEA更准确,特别是在技术效率低下影响逐渐减少的情况下。我们使用来自63个国家的真实医疗数据集,通过估计上下文变量对每个国家生产力的影响来评估所提出的TEA方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time envelopment analysis: A new method for effectively incorporating time series in data envelopment analysis
Data envelopment analysis (DEA) is a non-parametric tool for empirically evaluating the relative efficiency of homogeneous organizational units, i.e., decision-making units, by estimating the production frontiers. Time series analysis is a statistical technique that considers a series of data collected chronologically over time intervals. This study introduces a three-stage method, Time Envelopment Analysis (TEA), to effectively integrate time series analysis into DEA. The three-stage method includes a first-order autoregressive (AR(1)) model followed by DEA and ordinary least squares (OLS). The performance of the TEA method with four different values for the AR(1) parameters is compared with the DEA-OLS procedure using extensive Monte Carlo simulations. The simulation results show that the TEA method outperforms the DEA-OLS procedure. We further demonstrate that TEA is more accurate when the autoregressive parameter is smaller, particularly in scenarios defined by a progressive decrease in the impact of technical inefficiencies. We evaluate the proposed TEA method using a real-world healthcare dataset from 63 countries by estimating the effect of contextual variables on each country’s productivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信