Robin Strickstrock , Alexander Hagg , Marco Hülsmann , Karl N. Kirschner , Dirk Reith
{"title":"力场参数优化中的微调特性域加权因子和目标函数","authors":"Robin Strickstrock , Alexander Hagg , Marco Hülsmann , Karl N. Kirschner , Dirk Reith","doi":"10.1016/j.jmgm.2025.109035","DOIUrl":null,"url":null,"abstract":"<div><div>Force field (FF) based molecular modeling is an often used method to investigate and study structural and dynamic properties of (bio-)chemical substances and systems. When such a system is modeled or refined, the force-field parameters need to be adjusted. This force-field parameter optimization can be a tedious task and is always a trade-off in terms of errors regarding the targeted properties. To better control the balance of various properties’ errors, in this study we introduce weighting factors for the optimization objectives. Different weighting strategies are compared to fine-tune the balance between bulk-phase density and relative conformational energies (RCE), using <span><math><mi>n</mi></math></span>-octane as a representative system. Additionally, a non-linear projection of the individual property-specific parts of the optimized loss function is deployed to further improve the balance between them. The results show that the combined error for the reproduction of the properties targeted in this optimization is reduced. Furthermore, the transferability of the force field parameters (FFParams) to chemically similar systems is increased. One interesting outcome is a large variety in the resulting optimized FFParams and corresponding errors, suggesting that the optimization landscape is multi-modal and very dependent on the weighting factor setup. We conclude that adjusting the weighting factors can be a very important feature to lower the overall error in the FF optimization procedure, giving researchers the possibility to fine-tune their FFs.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"139 ","pages":"Article 109035"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-tuning property domain weighting factors and the objective function in force-field parameter optimization\",\"authors\":\"Robin Strickstrock , Alexander Hagg , Marco Hülsmann , Karl N. Kirschner , Dirk Reith\",\"doi\":\"10.1016/j.jmgm.2025.109035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Force field (FF) based molecular modeling is an often used method to investigate and study structural and dynamic properties of (bio-)chemical substances and systems. When such a system is modeled or refined, the force-field parameters need to be adjusted. This force-field parameter optimization can be a tedious task and is always a trade-off in terms of errors regarding the targeted properties. To better control the balance of various properties’ errors, in this study we introduce weighting factors for the optimization objectives. Different weighting strategies are compared to fine-tune the balance between bulk-phase density and relative conformational energies (RCE), using <span><math><mi>n</mi></math></span>-octane as a representative system. Additionally, a non-linear projection of the individual property-specific parts of the optimized loss function is deployed to further improve the balance between them. The results show that the combined error for the reproduction of the properties targeted in this optimization is reduced. Furthermore, the transferability of the force field parameters (FFParams) to chemically similar systems is increased. One interesting outcome is a large variety in the resulting optimized FFParams and corresponding errors, suggesting that the optimization landscape is multi-modal and very dependent on the weighting factor setup. We conclude that adjusting the weighting factors can be a very important feature to lower the overall error in the FF optimization procedure, giving researchers the possibility to fine-tune their FFs.</div></div>\",\"PeriodicalId\":16361,\"journal\":{\"name\":\"Journal of molecular graphics & modelling\",\"volume\":\"139 \",\"pages\":\"Article 109035\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics & modelling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1093326325000956\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326325000956","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Fine-tuning property domain weighting factors and the objective function in force-field parameter optimization
Force field (FF) based molecular modeling is an often used method to investigate and study structural and dynamic properties of (bio-)chemical substances and systems. When such a system is modeled or refined, the force-field parameters need to be adjusted. This force-field parameter optimization can be a tedious task and is always a trade-off in terms of errors regarding the targeted properties. To better control the balance of various properties’ errors, in this study we introduce weighting factors for the optimization objectives. Different weighting strategies are compared to fine-tune the balance between bulk-phase density and relative conformational energies (RCE), using -octane as a representative system. Additionally, a non-linear projection of the individual property-specific parts of the optimized loss function is deployed to further improve the balance between them. The results show that the combined error for the reproduction of the properties targeted in this optimization is reduced. Furthermore, the transferability of the force field parameters (FFParams) to chemically similar systems is increased. One interesting outcome is a large variety in the resulting optimized FFParams and corresponding errors, suggesting that the optimization landscape is multi-modal and very dependent on the weighting factor setup. We conclude that adjusting the weighting factors can be a very important feature to lower the overall error in the FF optimization procedure, giving researchers the possibility to fine-tune their FFs.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.