{"title":"泛素连接酶NKLAM促进细胞凋亡和抑制细胞生长。","authors":"Paul A Willard,Jacki Kornbluth","doi":"10.1016/j.jbc.2025.108527","DOIUrl":null,"url":null,"abstract":"Natural Killer Lytic Associated Molecule (NKLAM), also known as RNF19b, is a member of the RING-in between-RING-RING (RBR) E3 ubiquitin ligase family and plays a pivotal role in immune regulation. We identified a critical cysteine residue at position 301 essential for NKLAM's ubiquitin ligase function. Site-directed mutagenesis of this residue to serine or alanine abrogated the ligase activity of NKLAM. Utilizing inducible expression systems in two different cell lines, HEK293 embryonic kidney cells and K562 myeloid leukemia cells, we demonstrated that wild-type (WT) NKLAM, but not the catalytically inactive NKLAM alanine mutant (C301A), inhibited cellular proliferation, as evidenced by reduced cell numbers and decreased metabolic activity. Moreover, NKLAM expression led to a significant decrease in the abundance and stability of the proto-oncogene c-Myc, a key regulator of proliferation. NKLAM facilitated the proteasomal degradation of c-Myc, with a reduction in c-Myc half-life from 27 minutes to 12 minutes and restoration of c-Myc levels upon proteasome inhibition. Notably, prolonged NKLAM expression induced apoptosis, measured by annexin-V staining and caspase activation. Strikingly, the serine mutant, C301S, while lacking ubiquitin ligase activity, induced apoptosis comparable to WT NKLAM, highlighting an alternative pathway for NKLAM-mediated inhibition of cellular homeostasis. Our findings indicate that NKLAM is a cytolytic protein with multifaceted roles in cellular proliferation and apoptosis.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"76 1","pages":"108527"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ubiquitin ligase NKLAM promotes apoptosis and suppression of cell growth.\",\"authors\":\"Paul A Willard,Jacki Kornbluth\",\"doi\":\"10.1016/j.jbc.2025.108527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural Killer Lytic Associated Molecule (NKLAM), also known as RNF19b, is a member of the RING-in between-RING-RING (RBR) E3 ubiquitin ligase family and plays a pivotal role in immune regulation. We identified a critical cysteine residue at position 301 essential for NKLAM's ubiquitin ligase function. Site-directed mutagenesis of this residue to serine or alanine abrogated the ligase activity of NKLAM. Utilizing inducible expression systems in two different cell lines, HEK293 embryonic kidney cells and K562 myeloid leukemia cells, we demonstrated that wild-type (WT) NKLAM, but not the catalytically inactive NKLAM alanine mutant (C301A), inhibited cellular proliferation, as evidenced by reduced cell numbers and decreased metabolic activity. Moreover, NKLAM expression led to a significant decrease in the abundance and stability of the proto-oncogene c-Myc, a key regulator of proliferation. NKLAM facilitated the proteasomal degradation of c-Myc, with a reduction in c-Myc half-life from 27 minutes to 12 minutes and restoration of c-Myc levels upon proteasome inhibition. Notably, prolonged NKLAM expression induced apoptosis, measured by annexin-V staining and caspase activation. Strikingly, the serine mutant, C301S, while lacking ubiquitin ligase activity, induced apoptosis comparable to WT NKLAM, highlighting an alternative pathway for NKLAM-mediated inhibition of cellular homeostasis. Our findings indicate that NKLAM is a cytolytic protein with multifaceted roles in cellular proliferation and apoptosis.\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\"76 1\",\"pages\":\"108527\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.108527\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108527","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The ubiquitin ligase NKLAM promotes apoptosis and suppression of cell growth.
Natural Killer Lytic Associated Molecule (NKLAM), also known as RNF19b, is a member of the RING-in between-RING-RING (RBR) E3 ubiquitin ligase family and plays a pivotal role in immune regulation. We identified a critical cysteine residue at position 301 essential for NKLAM's ubiquitin ligase function. Site-directed mutagenesis of this residue to serine or alanine abrogated the ligase activity of NKLAM. Utilizing inducible expression systems in two different cell lines, HEK293 embryonic kidney cells and K562 myeloid leukemia cells, we demonstrated that wild-type (WT) NKLAM, but not the catalytically inactive NKLAM alanine mutant (C301A), inhibited cellular proliferation, as evidenced by reduced cell numbers and decreased metabolic activity. Moreover, NKLAM expression led to a significant decrease in the abundance and stability of the proto-oncogene c-Myc, a key regulator of proliferation. NKLAM facilitated the proteasomal degradation of c-Myc, with a reduction in c-Myc half-life from 27 minutes to 12 minutes and restoration of c-Myc levels upon proteasome inhibition. Notably, prolonged NKLAM expression induced apoptosis, measured by annexin-V staining and caspase activation. Strikingly, the serine mutant, C301S, while lacking ubiquitin ligase activity, induced apoptosis comparable to WT NKLAM, highlighting an alternative pathway for NKLAM-mediated inhibition of cellular homeostasis. Our findings indicate that NKLAM is a cytolytic protein with multifaceted roles in cellular proliferation and apoptosis.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.