{"title":"混沌引导局部搜索算法求解全局优化及工程问题","authors":"Anis Naanaa","doi":"10.1007/s10878-025-01281-8","DOIUrl":null,"url":null,"abstract":"<p>Chaos optimization algorithm (COA) is an interesting alternative in a global optimization problem. Due to the non-repetition and ergodicity of chaos, it can explore the global search space at higher speeds than stochastic searches that depend on probabilities. To adjust the solution obtained by COA, guided local search algorithm (GLS) is integrated with COA to form a hybrid algorithm. GLS is a metaheuristic optimization algorithm that combines elements of local search with strategic guidance to efficiently explore the solution space. This study proposes a chaotic guided local search algorithm to search for global solutions. The proposed algorithm, namely COA-GLS, contributes to optimization problems by providing a balance between quick convergence and good solution quality. Its combination of local refinement, strategic guidance, diversification strategies, and adaptability makes it a powerful metaheuristic capable of efficiently navigating complex solution spaces and finding high-quality solutions in a relatively short amount of time. Simulation results show that the present algorithms significantly outperform the existing methods in terms of convergence speed, numerical stability, and a better optimal solution than other algorithms.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"53 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chaotic guided local search algorithm for solving global optimization and engineering problems\",\"authors\":\"Anis Naanaa\",\"doi\":\"10.1007/s10878-025-01281-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chaos optimization algorithm (COA) is an interesting alternative in a global optimization problem. Due to the non-repetition and ergodicity of chaos, it can explore the global search space at higher speeds than stochastic searches that depend on probabilities. To adjust the solution obtained by COA, guided local search algorithm (GLS) is integrated with COA to form a hybrid algorithm. GLS is a metaheuristic optimization algorithm that combines elements of local search with strategic guidance to efficiently explore the solution space. This study proposes a chaotic guided local search algorithm to search for global solutions. The proposed algorithm, namely COA-GLS, contributes to optimization problems by providing a balance between quick convergence and good solution quality. Its combination of local refinement, strategic guidance, diversification strategies, and adaptability makes it a powerful metaheuristic capable of efficiently navigating complex solution spaces and finding high-quality solutions in a relatively short amount of time. Simulation results show that the present algorithms significantly outperform the existing methods in terms of convergence speed, numerical stability, and a better optimal solution than other algorithms.</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-025-01281-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01281-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Chaotic guided local search algorithm for solving global optimization and engineering problems
Chaos optimization algorithm (COA) is an interesting alternative in a global optimization problem. Due to the non-repetition and ergodicity of chaos, it can explore the global search space at higher speeds than stochastic searches that depend on probabilities. To adjust the solution obtained by COA, guided local search algorithm (GLS) is integrated with COA to form a hybrid algorithm. GLS is a metaheuristic optimization algorithm that combines elements of local search with strategic guidance to efficiently explore the solution space. This study proposes a chaotic guided local search algorithm to search for global solutions. The proposed algorithm, namely COA-GLS, contributes to optimization problems by providing a balance between quick convergence and good solution quality. Its combination of local refinement, strategic guidance, diversification strategies, and adaptability makes it a powerful metaheuristic capable of efficiently navigating complex solution spaces and finding high-quality solutions in a relatively short amount of time. Simulation results show that the present algorithms significantly outperform the existing methods in terms of convergence speed, numerical stability, and a better optimal solution than other algorithms.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.