{"title":"参数偏微分方程的化简Krylov基方法","authors":"Yuwen Li, Ludmil T. Zikatanov, Cheng Zuo","doi":"10.1137/24m1661236","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 976-999, April 2025. <br/> Abstract. This work is on a user-friendly reduced basis method for the solution of families of parametric partial differential equations by preconditioned Krylov subspace methods including the conjugate gradient method, generalized minimum residual method, and biconjugate gradient method. The proposed methods use a preconditioned Krylov subspace method for a high-fidelity discretization of one parameter instance to generate orthogonal basis vectors of the reduced basis subspace. Then large-scale discrete parameter-dependent problems are approximately solved in the low-dimensional Krylov subspace. We prove convergence estimates for the proposed method when the differential operator depends on two parameter coefficients and the preconditioner is the inverse of the operator at a fixed parameter. As is shown in numerical experiments, only a small number of Krylov subspace iterations are needed to simultaneously generate approximate solutions of a family of high-fidelity and large-scale parametrized systems in the reduced basis subspace. This reduces the computational cost by orders of magnitude, because (1) to construct the reduced basis vectors, we only solve one large-scale problem in the high-fidelity level; and (2) the family of problems restricted to the reduced basis subspace have much smaller sizes.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"44 1","pages":"976-999"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced Krylov Basis Methods for Parametric Partial Differential Equations\",\"authors\":\"Yuwen Li, Ludmil T. Zikatanov, Cheng Zuo\",\"doi\":\"10.1137/24m1661236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 976-999, April 2025. <br/> Abstract. This work is on a user-friendly reduced basis method for the solution of families of parametric partial differential equations by preconditioned Krylov subspace methods including the conjugate gradient method, generalized minimum residual method, and biconjugate gradient method. The proposed methods use a preconditioned Krylov subspace method for a high-fidelity discretization of one parameter instance to generate orthogonal basis vectors of the reduced basis subspace. Then large-scale discrete parameter-dependent problems are approximately solved in the low-dimensional Krylov subspace. We prove convergence estimates for the proposed method when the differential operator depends on two parameter coefficients and the preconditioner is the inverse of the operator at a fixed parameter. As is shown in numerical experiments, only a small number of Krylov subspace iterations are needed to simultaneously generate approximate solutions of a family of high-fidelity and large-scale parametrized systems in the reduced basis subspace. This reduces the computational cost by orders of magnitude, because (1) to construct the reduced basis vectors, we only solve one large-scale problem in the high-fidelity level; and (2) the family of problems restricted to the reduced basis subspace have much smaller sizes.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"44 1\",\"pages\":\"976-999\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1661236\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1661236","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Reduced Krylov Basis Methods for Parametric Partial Differential Equations
SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 976-999, April 2025. Abstract. This work is on a user-friendly reduced basis method for the solution of families of parametric partial differential equations by preconditioned Krylov subspace methods including the conjugate gradient method, generalized minimum residual method, and biconjugate gradient method. The proposed methods use a preconditioned Krylov subspace method for a high-fidelity discretization of one parameter instance to generate orthogonal basis vectors of the reduced basis subspace. Then large-scale discrete parameter-dependent problems are approximately solved in the low-dimensional Krylov subspace. We prove convergence estimates for the proposed method when the differential operator depends on two parameter coefficients and the preconditioner is the inverse of the operator at a fixed parameter. As is shown in numerical experiments, only a small number of Krylov subspace iterations are needed to simultaneously generate approximate solutions of a family of high-fidelity and large-scale parametrized systems in the reduced basis subspace. This reduces the computational cost by orders of magnitude, because (1) to construct the reduced basis vectors, we only solve one large-scale problem in the high-fidelity level; and (2) the family of problems restricted to the reduced basis subspace have much smaller sizes.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.