参数偏微分方程的化简Krylov基方法

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Yuwen Li, Ludmil T. Zikatanov, Cheng Zuo
{"title":"参数偏微分方程的化简Krylov基方法","authors":"Yuwen Li, Ludmil T. Zikatanov, Cheng Zuo","doi":"10.1137/24m1661236","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 976-999, April 2025. <br/> Abstract. This work is on a user-friendly reduced basis method for the solution of families of parametric partial differential equations by preconditioned Krylov subspace methods including the conjugate gradient method, generalized minimum residual method, and biconjugate gradient method. The proposed methods use a preconditioned Krylov subspace method for a high-fidelity discretization of one parameter instance to generate orthogonal basis vectors of the reduced basis subspace. Then large-scale discrete parameter-dependent problems are approximately solved in the low-dimensional Krylov subspace. We prove convergence estimates for the proposed method when the differential operator depends on two parameter coefficients and the preconditioner is the inverse of the operator at a fixed parameter. As is shown in numerical experiments, only a small number of Krylov subspace iterations are needed to simultaneously generate approximate solutions of a family of high-fidelity and large-scale parametrized systems in the reduced basis subspace. This reduces the computational cost by orders of magnitude, because (1) to construct the reduced basis vectors, we only solve one large-scale problem in the high-fidelity level; and (2) the family of problems restricted to the reduced basis subspace have much smaller sizes.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"44 1","pages":"976-999"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced Krylov Basis Methods for Parametric Partial Differential Equations\",\"authors\":\"Yuwen Li, Ludmil T. Zikatanov, Cheng Zuo\",\"doi\":\"10.1137/24m1661236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 976-999, April 2025. <br/> Abstract. This work is on a user-friendly reduced basis method for the solution of families of parametric partial differential equations by preconditioned Krylov subspace methods including the conjugate gradient method, generalized minimum residual method, and biconjugate gradient method. The proposed methods use a preconditioned Krylov subspace method for a high-fidelity discretization of one parameter instance to generate orthogonal basis vectors of the reduced basis subspace. Then large-scale discrete parameter-dependent problems are approximately solved in the low-dimensional Krylov subspace. We prove convergence estimates for the proposed method when the differential operator depends on two parameter coefficients and the preconditioner is the inverse of the operator at a fixed parameter. As is shown in numerical experiments, only a small number of Krylov subspace iterations are needed to simultaneously generate approximate solutions of a family of high-fidelity and large-scale parametrized systems in the reduced basis subspace. This reduces the computational cost by orders of magnitude, because (1) to construct the reduced basis vectors, we only solve one large-scale problem in the high-fidelity level; and (2) the family of problems restricted to the reduced basis subspace have much smaller sizes.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"44 1\",\"pages\":\"976-999\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1661236\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1661236","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数值分析期刊》,第 63 卷,第 2 期,第 976-999 页,2025 年 4 月。 摘要。本研究是关于一种用户友好的还原基方法,用于用共轭梯度法、广义最小残差法和双共轭梯度法等预处理 Krylov 子空间方法求解参数偏微分方程族。所提出的方法使用预处理 Krylov 子空间方法对一个参数实例进行高保真离散化,生成还原基子空间的正交基向量。然后在低维 Krylov 子空间中近似求解与参数相关的大规模离散问题。我们证明了当微分算子取决于两个参数系数,且预处理是固定参数下算子的逆时,所提方法的收敛估计值。数值实验表明,只需进行少量的 Krylov 子空间迭代,就能在还原基子空间中同时生成一系列高保真和大规模参数化系统的近似解。这将计算成本降低了几个数量级,因为:(1) 为了构建还原基向量,我们只需解决一个高保真级别的大规模问题;(2) 限制在还原基子空间中的问题族的规模要小得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced Krylov Basis Methods for Parametric Partial Differential Equations
SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 976-999, April 2025.
Abstract. This work is on a user-friendly reduced basis method for the solution of families of parametric partial differential equations by preconditioned Krylov subspace methods including the conjugate gradient method, generalized minimum residual method, and biconjugate gradient method. The proposed methods use a preconditioned Krylov subspace method for a high-fidelity discretization of one parameter instance to generate orthogonal basis vectors of the reduced basis subspace. Then large-scale discrete parameter-dependent problems are approximately solved in the low-dimensional Krylov subspace. We prove convergence estimates for the proposed method when the differential operator depends on two parameter coefficients and the preconditioner is the inverse of the operator at a fixed parameter. As is shown in numerical experiments, only a small number of Krylov subspace iterations are needed to simultaneously generate approximate solutions of a family of high-fidelity and large-scale parametrized systems in the reduced basis subspace. This reduces the computational cost by orders of magnitude, because (1) to construct the reduced basis vectors, we only solve one large-scale problem in the high-fidelity level; and (2) the family of problems restricted to the reduced basis subspace have much smaller sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信