{"title":"电缆沟问题的多目标视角","authors":"Lara Löhken, Michael Stiglmayr","doi":"10.1007/s10878-025-01289-0","DOIUrl":null,"url":null,"abstract":"<p>The cable-trench problem is defined as a linear combination of the shortest path and the minimum spanning tree problem. In particular, the goal is to find a spanning tree that simultaneously minimizes its total length and the total path length from a pre-defined root to all other vertices. Both, the minimum spanning tree and the shortest path problem are known to be efficiently solvable. However, a linear combination of these two objectives results in a highly complex problem. In this article, we introduce the bi-objective cable-trench problem which separates the two cost functions. We show that in general, the bi-objective formulation has additional compromise solutions compared to the cable-trench problem in its original formulation. To determine the set of non-dominated points and efficient solutions, we use <span>\\(\\varepsilon \\)</span>-constraint scalarizations in combination with a problem-specific cutting plane. Moreover, we present numerical results on different types of graphs analyzing the impact of density and cost structure on the cardinality of the non-dominated set and the solution time.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"35 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-objective perspective on the cable-trench problem\",\"authors\":\"Lara Löhken, Michael Stiglmayr\",\"doi\":\"10.1007/s10878-025-01289-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The cable-trench problem is defined as a linear combination of the shortest path and the minimum spanning tree problem. In particular, the goal is to find a spanning tree that simultaneously minimizes its total length and the total path length from a pre-defined root to all other vertices. Both, the minimum spanning tree and the shortest path problem are known to be efficiently solvable. However, a linear combination of these two objectives results in a highly complex problem. In this article, we introduce the bi-objective cable-trench problem which separates the two cost functions. We show that in general, the bi-objective formulation has additional compromise solutions compared to the cable-trench problem in its original formulation. To determine the set of non-dominated points and efficient solutions, we use <span>\\\\(\\\\varepsilon \\\\)</span>-constraint scalarizations in combination with a problem-specific cutting plane. Moreover, we present numerical results on different types of graphs analyzing the impact of density and cost structure on the cardinality of the non-dominated set and the solution time.</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-025-01289-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01289-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A multi-objective perspective on the cable-trench problem
The cable-trench problem is defined as a linear combination of the shortest path and the minimum spanning tree problem. In particular, the goal is to find a spanning tree that simultaneously minimizes its total length and the total path length from a pre-defined root to all other vertices. Both, the minimum spanning tree and the shortest path problem are known to be efficiently solvable. However, a linear combination of these two objectives results in a highly complex problem. In this article, we introduce the bi-objective cable-trench problem which separates the two cost functions. We show that in general, the bi-objective formulation has additional compromise solutions compared to the cable-trench problem in its original formulation. To determine the set of non-dominated points and efficient solutions, we use \(\varepsilon \)-constraint scalarizations in combination with a problem-specific cutting plane. Moreover, we present numerical results on different types of graphs analyzing the impact of density and cost structure on the cardinality of the non-dominated set and the solution time.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.