{"title":"流体飞片实验绘制的铂液-气相边界图","authors":"T. M. Hartsfield, K. M. Amodeo","doi":"10.1103/physrevb.111.134115","DOIUrl":null,"url":null,"abstract":"We report a direct measurement of the temperature and density of a metal along its liquid-vapor coexistence (L-V) curve. By shocking platinum to a high-pressure liquid, we imparted sufficient heat for subsequent isentropic release to place it in a state on the boundary between the liquid and vapor phases. Released material in the liquid phase acted as a high velocity flyer pinned to the L-V curve. We measured velocity and radiant emission of the flyer as well as the interface motion and transiting shock states induced in a downstream window material by its impact. We used these measurements to calculate temperature and density of the L-V curve state which we compare to density functional theory predictions. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"78 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Platinum liquid-vapor phase boundary mapped by fluid flyer experiments\",\"authors\":\"T. M. Hartsfield, K. M. Amodeo\",\"doi\":\"10.1103/physrevb.111.134115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a direct measurement of the temperature and density of a metal along its liquid-vapor coexistence (L-V) curve. By shocking platinum to a high-pressure liquid, we imparted sufficient heat for subsequent isentropic release to place it in a state on the boundary between the liquid and vapor phases. Released material in the liquid phase acted as a high velocity flyer pinned to the L-V curve. We measured velocity and radiant emission of the flyer as well as the interface motion and transiting shock states induced in a downstream window material by its impact. We used these measurements to calculate temperature and density of the L-V curve state which we compare to density functional theory predictions. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.111.134115\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.134115","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Platinum liquid-vapor phase boundary mapped by fluid flyer experiments
We report a direct measurement of the temperature and density of a metal along its liquid-vapor coexistence (L-V) curve. By shocking platinum to a high-pressure liquid, we imparted sufficient heat for subsequent isentropic release to place it in a state on the boundary between the liquid and vapor phases. Released material in the liquid phase acted as a high velocity flyer pinned to the L-V curve. We measured velocity and radiant emission of the flyer as well as the interface motion and transiting shock states induced in a downstream window material by its impact. We used these measurements to calculate temperature and density of the L-V curve state which we compare to density functional theory predictions. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter