{"title":"基于主应力轨迹法的对数螺旋破坏面非饱和窄土挡土墙被动土压力半解析解","authors":"Bo Deng, Wei Long, Zhenyu He, Yufan Gao","doi":"10.1002/nag.3995","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Most existing passive earth pressure theories are not completely suitable for the calculation of unsaturated backfill in practical engineering, especially for narrow backfill cases. In view of this, this study establishes a modified analytical model for the passive earth pressure of narrow backfill behind a retaining wall under unsaturated steady-state seepage conditions, based on the log-spiral failure mechanism and the arched differential element method. The distribution, total force magnitude, and the height of the application point of passive earth pressure for narrow backfill under the rotation about the wall toe (RB) mode are calculated by the fourth order Runge–Kutta method within the framework of the generalized effective stress principle. To validate the proposed method, a comparative analysis is conducted by integrating experimental, theoretical, and OptumG2 simulation results. Moreover, the effect of main parameters on passive earth pressures is investigated through a parametric analysis. The results show that as the wall–soil interface friction angle increases gradually, the passive earth pressure distribution curve transitions from convex towards the wall back to concave towards the wall back; with the increase of aspect ratio, the passive earth pressure curve gradually shifts from curved to nearly straight; with a small air entry pressure parameter, the total passive earth pressure force increases as the air entry pressure parameter increases, while the height of the application point of total force initially decreases and then increases; the hysteresis effect reduces the total passive earth pressure force and decreases the height of the application point of the total force.</p>\n </div>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"49 10","pages":"2432-2454"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-Analytical Solution for Passive Earth Pressure in Unsaturated Narrow Soils Behind Retaining Walls With a Log-Spiral Failure Surface Based on the Principal Stress Trajectory Method\",\"authors\":\"Bo Deng, Wei Long, Zhenyu He, Yufan Gao\",\"doi\":\"10.1002/nag.3995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Most existing passive earth pressure theories are not completely suitable for the calculation of unsaturated backfill in practical engineering, especially for narrow backfill cases. In view of this, this study establishes a modified analytical model for the passive earth pressure of narrow backfill behind a retaining wall under unsaturated steady-state seepage conditions, based on the log-spiral failure mechanism and the arched differential element method. The distribution, total force magnitude, and the height of the application point of passive earth pressure for narrow backfill under the rotation about the wall toe (RB) mode are calculated by the fourth order Runge–Kutta method within the framework of the generalized effective stress principle. To validate the proposed method, a comparative analysis is conducted by integrating experimental, theoretical, and OptumG2 simulation results. Moreover, the effect of main parameters on passive earth pressures is investigated through a parametric analysis. The results show that as the wall–soil interface friction angle increases gradually, the passive earth pressure distribution curve transitions from convex towards the wall back to concave towards the wall back; with the increase of aspect ratio, the passive earth pressure curve gradually shifts from curved to nearly straight; with a small air entry pressure parameter, the total passive earth pressure force increases as the air entry pressure parameter increases, while the height of the application point of total force initially decreases and then increases; the hysteresis effect reduces the total passive earth pressure force and decreases the height of the application point of the total force.</p>\\n </div>\",\"PeriodicalId\":13786,\"journal\":{\"name\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"volume\":\"49 10\",\"pages\":\"2432-2454\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nag.3995\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3995","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Semi-Analytical Solution for Passive Earth Pressure in Unsaturated Narrow Soils Behind Retaining Walls With a Log-Spiral Failure Surface Based on the Principal Stress Trajectory Method
Most existing passive earth pressure theories are not completely suitable for the calculation of unsaturated backfill in practical engineering, especially for narrow backfill cases. In view of this, this study establishes a modified analytical model for the passive earth pressure of narrow backfill behind a retaining wall under unsaturated steady-state seepage conditions, based on the log-spiral failure mechanism and the arched differential element method. The distribution, total force magnitude, and the height of the application point of passive earth pressure for narrow backfill under the rotation about the wall toe (RB) mode are calculated by the fourth order Runge–Kutta method within the framework of the generalized effective stress principle. To validate the proposed method, a comparative analysis is conducted by integrating experimental, theoretical, and OptumG2 simulation results. Moreover, the effect of main parameters on passive earth pressures is investigated through a parametric analysis. The results show that as the wall–soil interface friction angle increases gradually, the passive earth pressure distribution curve transitions from convex towards the wall back to concave towards the wall back; with the increase of aspect ratio, the passive earth pressure curve gradually shifts from curved to nearly straight; with a small air entry pressure parameter, the total passive earth pressure force increases as the air entry pressure parameter increases, while the height of the application point of total force initially decreases and then increases; the hysteresis effect reduces the total passive earth pressure force and decreases the height of the application point of the total force.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.