温度影响海洋潮间带沉积物中宏观和微塑料对微量金属的吸附:来自长期实验室研究的见解

IF 2.8 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY
Tamara N. Kazmiruk, Juan José Alava, Eirikur Palsson, Leah I. Bendell
{"title":"温度影响海洋潮间带沉积物中宏观和微塑料对微量金属的吸附:来自长期实验室研究的见解","authors":"Tamara N. Kazmiruk, Juan José Alava, Eirikur Palsson, Leah I. Bendell","doi":"10.3389/fmars.2025.1570114","DOIUrl":null,"url":null,"abstract":"Macro- and microplastics and trace metals are significant pollutants in the marine environment and have been reported in all ecosystems around the world. The process of sorption/desorption of trace metals by macro- and microplastics is influenced by various factors, including the morphological characteristics of macro- and microplastics, their adsorption capacity, and environmental conditions. This research provides and discusses laboratory experimental findings on the sorption of trace metals cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) by macro- and microplastics of polyethylene terephthalate (PETE) and high-density polyethylene (HDPE) within two contrasting marine intertidal sedimentary environments with high and low organic matter content under conditions of constant temperatures (T=- 4.0°C, T=+ 4.0°C, and T=+18.0°C). Our aim is to determine the effect of temperature on trace metal sorption onto macro- and microplastics. Temperature alters the metals’ sorption by plastic by altering the rate of reaching equilibrium and equilibrium concentration, whereas constant temperature had only a minor influence on the partitioning of trace metals. Sediment organic matter influences sorption dynamics at all three temperatures T=- 4.0°C, T=+ 4.0°C, and T=+18.0°C. This study enhances our understanding of how temperature can effect trace metals-plastic particle interactions in the marine intertidal sedimentary environment providing insight as to conditions that will create the greatest threat to higher trophic levels by providing an additional vector of Cd, Cu, Pb, and Zn exposure into benthic food webs.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"30 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature affects the sorption of trace metals by macro- and microplastics within marine intertidal sediments: insights from a long-term laboratory-based study\",\"authors\":\"Tamara N. Kazmiruk, Juan José Alava, Eirikur Palsson, Leah I. Bendell\",\"doi\":\"10.3389/fmars.2025.1570114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Macro- and microplastics and trace metals are significant pollutants in the marine environment and have been reported in all ecosystems around the world. The process of sorption/desorption of trace metals by macro- and microplastics is influenced by various factors, including the morphological characteristics of macro- and microplastics, their adsorption capacity, and environmental conditions. This research provides and discusses laboratory experimental findings on the sorption of trace metals cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) by macro- and microplastics of polyethylene terephthalate (PETE) and high-density polyethylene (HDPE) within two contrasting marine intertidal sedimentary environments with high and low organic matter content under conditions of constant temperatures (T=- 4.0°C, T=+ 4.0°C, and T=+18.0°C). Our aim is to determine the effect of temperature on trace metal sorption onto macro- and microplastics. Temperature alters the metals’ sorption by plastic by altering the rate of reaching equilibrium and equilibrium concentration, whereas constant temperature had only a minor influence on the partitioning of trace metals. Sediment organic matter influences sorption dynamics at all three temperatures T=- 4.0°C, T=+ 4.0°C, and T=+18.0°C. This study enhances our understanding of how temperature can effect trace metals-plastic particle interactions in the marine intertidal sedimentary environment providing insight as to conditions that will create the greatest threat to higher trophic levels by providing an additional vector of Cd, Cu, Pb, and Zn exposure into benthic food webs.\",\"PeriodicalId\":12479,\"journal\":{\"name\":\"Frontiers in Marine Science\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Marine Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmars.2025.1570114\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1570114","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

宏观和微塑料以及微量金属是海洋环境中的重要污染物,在世界各地的所有生态系统中都有报道。宏观和微塑料对微量金属的吸附/解吸过程受多种因素的影响,包括宏观和微塑料的形态特征、吸附能力和环境条件。本研究提供并讨论了在恒温(T=- 4.0℃,T=+ 4.0℃和T=+18.0℃)条件下,聚乙烯对苯二甲酸乙二醇酯(PETE)和高密度聚乙烯(HDPE)宏观塑料和微塑料在两种不同有机物含量的海洋潮间带沉积环境中吸附微量金属镉(Cd)、铜(Cu)、铅(Pb)和锌(Zn)的实验室实验结果。我们的目的是确定温度对微量金属吸附到宏观和微观塑料的影响。温度通过改变达到平衡的速率和平衡浓度来改变塑料对金属的吸附,而恒温对微量金属的分配影响很小。沉积物有机质在T=- 4.0°C、T=+ 4.0°C和T=+18.0°C三种温度下影响吸附动力学。这项研究增强了我们对温度如何影响海洋潮间带沉积环境中痕量金属-塑料颗粒相互作用的理解,通过提供Cd, Cu, Pb和Zn暴露于底栖生物食物网的额外载体,提供了对更高营养水平造成最大威胁的条件的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temperature affects the sorption of trace metals by macro- and microplastics within marine intertidal sediments: insights from a long-term laboratory-based study
Macro- and microplastics and trace metals are significant pollutants in the marine environment and have been reported in all ecosystems around the world. The process of sorption/desorption of trace metals by macro- and microplastics is influenced by various factors, including the morphological characteristics of macro- and microplastics, their adsorption capacity, and environmental conditions. This research provides and discusses laboratory experimental findings on the sorption of trace metals cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) by macro- and microplastics of polyethylene terephthalate (PETE) and high-density polyethylene (HDPE) within two contrasting marine intertidal sedimentary environments with high and low organic matter content under conditions of constant temperatures (T=- 4.0°C, T=+ 4.0°C, and T=+18.0°C). Our aim is to determine the effect of temperature on trace metal sorption onto macro- and microplastics. Temperature alters the metals’ sorption by plastic by altering the rate of reaching equilibrium and equilibrium concentration, whereas constant temperature had only a minor influence on the partitioning of trace metals. Sediment organic matter influences sorption dynamics at all three temperatures T=- 4.0°C, T=+ 4.0°C, and T=+18.0°C. This study enhances our understanding of how temperature can effect trace metals-plastic particle interactions in the marine intertidal sedimentary environment providing insight as to conditions that will create the greatest threat to higher trophic levels by providing an additional vector of Cd, Cu, Pb, and Zn exposure into benthic food webs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Marine Science
Frontiers in Marine Science Agricultural and Biological Sciences-Aquatic Science
CiteScore
5.10
自引率
16.20%
发文量
2443
审稿时长
14 weeks
期刊介绍: Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide. With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信