全空间线性传输问题的自适应混合有限元-边界元法的最优收敛速率

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Gregor Gantner, Michele Ruggeri
{"title":"全空间线性传输问题的自适应混合有限元-边界元法的最优收敛速率","authors":"Gregor Gantner, Michele Ruggeri","doi":"10.1093/imanum/draf023","DOIUrl":null,"url":null,"abstract":"We consider a hybrid FEM-BEM method to compute approximations of full-space linear elliptic transmission problems. First, we derive a priori and a posteriori error estimates. Then, building on the latter, we present an adaptive algorithm and prove that it converges at optimal rates with respect to the number of mesh elements. Finally, we provide numerical experiments, demonstrating the practical performance of the adaptive algorithm.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"13 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal convergence rates of an adaptive hybrid FEM-BEM method for full-space linear transmission problems\",\"authors\":\"Gregor Gantner, Michele Ruggeri\",\"doi\":\"10.1093/imanum/draf023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a hybrid FEM-BEM method to compute approximations of full-space linear elliptic transmission problems. First, we derive a priori and a posteriori error estimates. Then, building on the latter, we present an adaptive algorithm and prove that it converges at optimal rates with respect to the number of mesh elements. Finally, we provide numerical experiments, demonstrating the practical performance of the adaptive algorithm.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf023\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf023","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一种混合有限元-边界元法来计算全空间线性椭圆传输问题的近似。首先,我们推导了先验和后验误差估计。然后,在后者的基础上,我们提出了一种自适应算法,并证明了它以最优速率收敛于网格元素的数量。最后,给出了数值实验,验证了自适应算法的实际性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal convergence rates of an adaptive hybrid FEM-BEM method for full-space linear transmission problems
We consider a hybrid FEM-BEM method to compute approximations of full-space linear elliptic transmission problems. First, we derive a priori and a posteriori error estimates. Then, building on the latter, we present an adaptive algorithm and prove that it converges at optimal rates with respect to the number of mesh elements. Finally, we provide numerical experiments, demonstrating the practical performance of the adaptive algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信