{"title":"双氢青蒿素通过抑制cGAS/STING/NF-κB信号通路减轻辐射所致肺损伤","authors":"Cailan Wang, Xinyi Lin, Shichun Guan, Qiaoyuan Wu, Shixiong Liang","doi":"10.1002/ddr.70090","DOIUrl":null,"url":null,"abstract":"<p>Dihydroartemisinin (DHA) is a derivative of artemisinin, which affects inflammation, oxidative stress, and immune regulation. However, the mechanism underlying its effects remains largely unknown. This study aims to explore the mechanism by which DHA affects radiation-induced lung injury (RILI), providing new insights for lung radiotherapy. To elucidate its mechanism of action, C57BL/6 J mice were irradiated with 15 Gy whole chest. RILI was evaluated by qRT-PCR, ELISA, histology, Western blot analysis, immunohistochemistry, and RILI signaling cascade studies. In addition, small interfering RNAs were employed to knockdown cGAS proteins in the cGAS-STING signaling pathway in the human bronchial epithelium cell line (BEAS-2B). Both In Vivo and Vitro experiments were conducted to investigate the specific mechanism by which DHA alleviated RILI. We observed the activation of the cGAS-STING pathway, along with the phosphorylation of the downstream target NF-κB and an increase in inflammatory factor levels in the mouse model following radiation exposure. In the cell model, irradiation also triggered the activation of the cGAS-STING signaling pathway and its downstream targets, leading to elevated levels of inflammatory factors. Notably, knocking down the cGAS using small interfering RNA in the BEAS-2B cells significantly alleviated RILI in the cell model. Our study elucidated the mechanism of DHA reducing RILI through the cGAS/STING/NF-κB signaling pathway, and revealed that the GAS/STING/NF-κB axis may be a potential therapeutic target for RILI.</p>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"86 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ddr.70090","citationCount":"0","resultStr":"{\"title\":\"Dihydroartemisinin Attenuates Radiation-Induced Lung Injury by Inhibiting the cGAS/STING/NF-κB Signaling Pathway\",\"authors\":\"Cailan Wang, Xinyi Lin, Shichun Guan, Qiaoyuan Wu, Shixiong Liang\",\"doi\":\"10.1002/ddr.70090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dihydroartemisinin (DHA) is a derivative of artemisinin, which affects inflammation, oxidative stress, and immune regulation. However, the mechanism underlying its effects remains largely unknown. This study aims to explore the mechanism by which DHA affects radiation-induced lung injury (RILI), providing new insights for lung radiotherapy. To elucidate its mechanism of action, C57BL/6 J mice were irradiated with 15 Gy whole chest. RILI was evaluated by qRT-PCR, ELISA, histology, Western blot analysis, immunohistochemistry, and RILI signaling cascade studies. In addition, small interfering RNAs were employed to knockdown cGAS proteins in the cGAS-STING signaling pathway in the human bronchial epithelium cell line (BEAS-2B). Both In Vivo and Vitro experiments were conducted to investigate the specific mechanism by which DHA alleviated RILI. We observed the activation of the cGAS-STING pathway, along with the phosphorylation of the downstream target NF-κB and an increase in inflammatory factor levels in the mouse model following radiation exposure. In the cell model, irradiation also triggered the activation of the cGAS-STING signaling pathway and its downstream targets, leading to elevated levels of inflammatory factors. Notably, knocking down the cGAS using small interfering RNA in the BEAS-2B cells significantly alleviated RILI in the cell model. Our study elucidated the mechanism of DHA reducing RILI through the cGAS/STING/NF-κB signaling pathway, and revealed that the GAS/STING/NF-κB axis may be a potential therapeutic target for RILI.</p>\",\"PeriodicalId\":11291,\"journal\":{\"name\":\"Drug Development Research\",\"volume\":\"86 3\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ddr.70090\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Development Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70090\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70090","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Dihydroartemisinin Attenuates Radiation-Induced Lung Injury by Inhibiting the cGAS/STING/NF-κB Signaling Pathway
Dihydroartemisinin (DHA) is a derivative of artemisinin, which affects inflammation, oxidative stress, and immune regulation. However, the mechanism underlying its effects remains largely unknown. This study aims to explore the mechanism by which DHA affects radiation-induced lung injury (RILI), providing new insights for lung radiotherapy. To elucidate its mechanism of action, C57BL/6 J mice were irradiated with 15 Gy whole chest. RILI was evaluated by qRT-PCR, ELISA, histology, Western blot analysis, immunohistochemistry, and RILI signaling cascade studies. In addition, small interfering RNAs were employed to knockdown cGAS proteins in the cGAS-STING signaling pathway in the human bronchial epithelium cell line (BEAS-2B). Both In Vivo and Vitro experiments were conducted to investigate the specific mechanism by which DHA alleviated RILI. We observed the activation of the cGAS-STING pathway, along with the phosphorylation of the downstream target NF-κB and an increase in inflammatory factor levels in the mouse model following radiation exposure. In the cell model, irradiation also triggered the activation of the cGAS-STING signaling pathway and its downstream targets, leading to elevated levels of inflammatory factors. Notably, knocking down the cGAS using small interfering RNA in the BEAS-2B cells significantly alleviated RILI in the cell model. Our study elucidated the mechanism of DHA reducing RILI through the cGAS/STING/NF-κB signaling pathway, and revealed that the GAS/STING/NF-κB axis may be a potential therapeutic target for RILI.
期刊介绍:
Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.