非谐振子正则扰动特征值的Rayleigh-Schrödinger系数

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Kh. K. Ishkin
{"title":"非谐振子正则扰动特征值的Rayleigh-Schrödinger系数","authors":"Kh. K. Ishkin","doi":"10.1134/S0040577925040099","DOIUrl":null,"url":null,"abstract":"<p> We identify a class of perturbations of a complex anharmonic oscillator <span>\\(H\\)</span> for which the known formulas for the Rayleigh–Schrödinger coefficients can be significantly simplified. We investigate the effect of the spectral instability of the operator <span>\\(H\\)</span> on the behavior of the sequence of first perturbative corrections. We show that if <span>\\(H\\)</span> is not self-adjoint and the perturbation is finite and has finite smoothness at the right end of its support, then this sequence exponentially increases at infinity. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"223 1","pages":"650 - 664"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Rayleigh–Schrödinger coefficients for the eigenvalues of regular perturbations of an anharmonic oscillator\",\"authors\":\"Kh. K. Ishkin\",\"doi\":\"10.1134/S0040577925040099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We identify a class of perturbations of a complex anharmonic oscillator <span>\\\\(H\\\\)</span> for which the known formulas for the Rayleigh–Schrödinger coefficients can be significantly simplified. We investigate the effect of the spectral instability of the operator <span>\\\\(H\\\\)</span> on the behavior of the sequence of first perturbative corrections. We show that if <span>\\\\(H\\\\)</span> is not self-adjoint and the perturbation is finite and has finite smoothness at the right end of its support, then this sequence exponentially increases at infinity. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"223 1\",\"pages\":\"650 - 664\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577925040099\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925040099","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们确定了一类复非谐振子\(H\)的扰动,对于该类扰动,已知的Rayleigh-Schrödinger系数公式可以显著地简化。我们研究了算子\(H\)的谱不稳定性对一阶微扰修正序列行为的影响。我们证明了如果\(H\)不是自伴随的,并且扰动是有限的,并且在其支撑的右端具有有限的平滑性,则该序列在无穷远处呈指数增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Rayleigh–Schrödinger coefficients for the eigenvalues of regular perturbations of an anharmonic oscillator

We identify a class of perturbations of a complex anharmonic oscillator \(H\) for which the known formulas for the Rayleigh–Schrödinger coefficients can be significantly simplified. We investigate the effect of the spectral instability of the operator \(H\) on the behavior of the sequence of first perturbative corrections. We show that if \(H\) is not self-adjoint and the perturbation is finite and has finite smoothness at the right end of its support, then this sequence exponentially increases at infinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信