{"title":"基于深度学习的数据辅助信道估计与检测","authors":"Hamidreza Hashempoor;Wan Choi","doi":"10.1109/TMLCN.2025.3559472","DOIUrl":null,"url":null,"abstract":"We introduce a novel structure empowered by deep learning models, accompanied by a thorough training methodology, for enhancing channel estimation and data detection in multiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. Central to our approach is the incorporation of a Denoising Block, which comprises three meticulously designed deep neural networks (DNNs) tasked with accurately extracting noiseless embeddings from the received signal. Alongside, we develop the Correctness Classifier, a classification algorithm adept at distinguishing correctly detected data by leveraging the denoised received signal. By selectively utilizing these identified data symbols as additional pilot signals, we augment the available pilot signals for channel estimation. Our Denoising Block also enables direct data detection, rendering the system well-suited for low-latency applications. To enable model training, we propose a hybrid likelihood objective of the detected symbols. We analytically derive the gradients with respect to the hybrid likelihood, enabling us to successfully complete the training phase. When compared to other conventional methods, experiments and simulations show that the proposed data-aided channel estimator significantly lowers the mean-squared-error (MSE) of the estimation and thus improves data detection performance. Github repository link is <uri>https://github.com/Hamidreza-Hashempoor/5g-dataaided-channel-estimate</uri>.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"3 ","pages":"534-551"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10960353","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Data-Assisted Channel Estimation and Detection\",\"authors\":\"Hamidreza Hashempoor;Wan Choi\",\"doi\":\"10.1109/TMLCN.2025.3559472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel structure empowered by deep learning models, accompanied by a thorough training methodology, for enhancing channel estimation and data detection in multiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. Central to our approach is the incorporation of a Denoising Block, which comprises three meticulously designed deep neural networks (DNNs) tasked with accurately extracting noiseless embeddings from the received signal. Alongside, we develop the Correctness Classifier, a classification algorithm adept at distinguishing correctly detected data by leveraging the denoised received signal. By selectively utilizing these identified data symbols as additional pilot signals, we augment the available pilot signals for channel estimation. Our Denoising Block also enables direct data detection, rendering the system well-suited for low-latency applications. To enable model training, we propose a hybrid likelihood objective of the detected symbols. We analytically derive the gradients with respect to the hybrid likelihood, enabling us to successfully complete the training phase. When compared to other conventional methods, experiments and simulations show that the proposed data-aided channel estimator significantly lowers the mean-squared-error (MSE) of the estimation and thus improves data detection performance. Github repository link is <uri>https://github.com/Hamidreza-Hashempoor/5g-dataaided-channel-estimate</uri>.\",\"PeriodicalId\":100641,\"journal\":{\"name\":\"IEEE Transactions on Machine Learning in Communications and Networking\",\"volume\":\"3 \",\"pages\":\"534-551\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10960353\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Machine Learning in Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10960353/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10960353/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning-Based Data-Assisted Channel Estimation and Detection
We introduce a novel structure empowered by deep learning models, accompanied by a thorough training methodology, for enhancing channel estimation and data detection in multiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. Central to our approach is the incorporation of a Denoising Block, which comprises three meticulously designed deep neural networks (DNNs) tasked with accurately extracting noiseless embeddings from the received signal. Alongside, we develop the Correctness Classifier, a classification algorithm adept at distinguishing correctly detected data by leveraging the denoised received signal. By selectively utilizing these identified data symbols as additional pilot signals, we augment the available pilot signals for channel estimation. Our Denoising Block also enables direct data detection, rendering the system well-suited for low-latency applications. To enable model training, we propose a hybrid likelihood objective of the detected symbols. We analytically derive the gradients with respect to the hybrid likelihood, enabling us to successfully complete the training phase. When compared to other conventional methods, experiments and simulations show that the proposed data-aided channel estimator significantly lowers the mean-squared-error (MSE) of the estimation and thus improves data detection performance. Github repository link is https://github.com/Hamidreza-Hashempoor/5g-dataaided-channel-estimate.