Ziyang Gong , Maedeh Ramezani , Weile Li , Shi Li , Guojun Liu , Jiwen Hu , Renjie Zhou , Yafang Han
{"title":"研究了丙烯酸聚电解质接枝纤维素膜低压分离乙醇-水的简便方法","authors":"Ziyang Gong , Maedeh Ramezani , Weile Li , Shi Li , Guojun Liu , Jiwen Hu , Renjie Zhou , Yafang Han","doi":"10.1016/j.jcis.2025.137660","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional ethanol separation from low-concentration aqueous solutions is energy-intensive and can affect flavor, highlighting the need for efficient, economical alternatives. This study presents a selective, porous polyelectrolyte membrane fabricated by grafting polyacrylate salt (PAS) onto regenerated cellulose membranes using surface-initiated atom transfer radical polymerization (SI-ATRP). The pH-responsive PAS layer enables tunable selectivity, achieving ethanol rejection rates up to 80 % for 15 vol% ethanol solutions at pressures ≤ 0.2 MPa which shows improved comprehensive separation performance and development potential compared to commercial separation membranes. In addition, molecular dynamics simulations (MDS) reveal the interactions of polyelectrolyte chain behavior and ethanol–water molecules, as well as free volume changes drive separation. This green, scalable fabrication strategy offers a potential and promising pathway for ethanol/water separation, which is desirable for applications in areas such as efficient bioethanol dehydration and processing of low-content alcoholic beverages.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"694 ","pages":"Article 137660"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile approach developed for low-pressure separation of ethanol-water using cellulose membrane grafted with acrylic polyelectrolyte\",\"authors\":\"Ziyang Gong , Maedeh Ramezani , Weile Li , Shi Li , Guojun Liu , Jiwen Hu , Renjie Zhou , Yafang Han\",\"doi\":\"10.1016/j.jcis.2025.137660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conventional ethanol separation from low-concentration aqueous solutions is energy-intensive and can affect flavor, highlighting the need for efficient, economical alternatives. This study presents a selective, porous polyelectrolyte membrane fabricated by grafting polyacrylate salt (PAS) onto regenerated cellulose membranes using surface-initiated atom transfer radical polymerization (SI-ATRP). The pH-responsive PAS layer enables tunable selectivity, achieving ethanol rejection rates up to 80 % for 15 vol% ethanol solutions at pressures ≤ 0.2 MPa which shows improved comprehensive separation performance and development potential compared to commercial separation membranes. In addition, molecular dynamics simulations (MDS) reveal the interactions of polyelectrolyte chain behavior and ethanol–water molecules, as well as free volume changes drive separation. This green, scalable fabrication strategy offers a potential and promising pathway for ethanol/water separation, which is desirable for applications in areas such as efficient bioethanol dehydration and processing of low-content alcoholic beverages.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"694 \",\"pages\":\"Article 137660\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979725010513\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725010513","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Facile approach developed for low-pressure separation of ethanol-water using cellulose membrane grafted with acrylic polyelectrolyte
Conventional ethanol separation from low-concentration aqueous solutions is energy-intensive and can affect flavor, highlighting the need for efficient, economical alternatives. This study presents a selective, porous polyelectrolyte membrane fabricated by grafting polyacrylate salt (PAS) onto regenerated cellulose membranes using surface-initiated atom transfer radical polymerization (SI-ATRP). The pH-responsive PAS layer enables tunable selectivity, achieving ethanol rejection rates up to 80 % for 15 vol% ethanol solutions at pressures ≤ 0.2 MPa which shows improved comprehensive separation performance and development potential compared to commercial separation membranes. In addition, molecular dynamics simulations (MDS) reveal the interactions of polyelectrolyte chain behavior and ethanol–water molecules, as well as free volume changes drive separation. This green, scalable fabrication strategy offers a potential and promising pathway for ethanol/water separation, which is desirable for applications in areas such as efficient bioethanol dehydration and processing of low-content alcoholic beverages.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies