两相铁磁流体流动的无条件稳定变时间步长格式

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Aytura Keram , Pengzhan Huang , Yinnian He
{"title":"两相铁磁流体流动的无条件稳定变时间步长格式","authors":"Aytura Keram ,&nbsp;Pengzhan Huang ,&nbsp;Yinnian He","doi":"10.1016/j.cma.2025.118018","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a decoupled, linearized, unconditionally stable, and fully discrete numerical scheme is presented for simulating two-phase ferrofluid flows. This scheme is constructed by introducing two scalar auxiliary variables. It is based on the backward Euler scheme with variable time step and mixed finite element discretization. Nonlinear terms are treated explicitly to simplify the computational process. Meanwhile, without any restriction on time step, we show the stability of the proposed scheme. Finally, numerical examples are presented to check the accuracy and efficiency of the proposed scheme.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"442 ","pages":"Article 118018"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An unconditionally stable variable time step scheme for two-phase ferrofluid flows\",\"authors\":\"Aytura Keram ,&nbsp;Pengzhan Huang ,&nbsp;Yinnian He\",\"doi\":\"10.1016/j.cma.2025.118018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a decoupled, linearized, unconditionally stable, and fully discrete numerical scheme is presented for simulating two-phase ferrofluid flows. This scheme is constructed by introducing two scalar auxiliary variables. It is based on the backward Euler scheme with variable time step and mixed finite element discretization. Nonlinear terms are treated explicitly to simplify the computational process. Meanwhile, without any restriction on time step, we show the stability of the proposed scheme. Finally, numerical examples are presented to check the accuracy and efficiency of the proposed scheme.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"442 \",\"pages\":\"Article 118018\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782525002907\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525002907","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种解耦的、线性化的、无条件稳定的、完全离散的两相铁磁流体流动模拟数值格式。该方案通过引入两个标量辅助变量来构造。该方法基于变时间步长后向欧拉格式和混合有限元离散。非线性项被明确地处理以简化计算过程。同时,在不受时间步长限制的情况下,证明了该方案的稳定性。最后通过数值算例验证了该方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An unconditionally stable variable time step scheme for two-phase ferrofluid flows
In this paper, a decoupled, linearized, unconditionally stable, and fully discrete numerical scheme is presented for simulating two-phase ferrofluid flows. This scheme is constructed by introducing two scalar auxiliary variables. It is based on the backward Euler scheme with variable time step and mixed finite element discretization. Nonlinear terms are treated explicitly to simplify the computational process. Meanwhile, without any restriction on time step, we show the stability of the proposed scheme. Finally, numerical examples are presented to check the accuracy and efficiency of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信