Ida Skovgaard Christiansen , Rasmus Hartvig , Thomas Hartvig Lindkær Jensen
{"title":"技术说明:组织切片厚度对深度学习网络细胞分类准确性的影响","authors":"Ida Skovgaard Christiansen , Rasmus Hartvig , Thomas Hartvig Lindkær Jensen","doi":"10.1016/j.jpi.2025.100440","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>We are currently developing a cell classification system intended for routine histopathology. During observation, cells of interest are added to a deep learning (DL) network, which after training classifies the remaining cells of interest with high and immediately validatable accuracy. In this study, we identify the optimal histological microsection thickness for this process and describe in high detail the morphological differences introduced by variation in microsection thickness.</div></div><div><h3>Method</h3><div>From HE-stained digitized sections of liver cut manually at 5 thicknesses and on an automated microtome (DS), hepatocytes and non-hepatocytes were manually annotated and loaded into a DL convolutional neural network (ResNet). The network was trained at different settings to identify the thickness with optimal relation between number of training cells and validation accuracy. To shed interpretable light on the impact of thickness, exhaustive morphological details of the annotated cells were quantified and the differences between hepatocytes and non-hepatocytes were analyzed with random forest.</div></div><div><h3>Results</h3><div>Classifying hepatocytes from DS sections clearly resulted in highest validation accuracy with least number of cells and for the remaining thicknesses a trend towards thin sections being more efficient was observed. Random forest analysis generally identified variations in nuclear granularity as the most important features in distinguishing cells. In DS and the thinner tissue sections, nuclear granularity features were more distinguished.</div></div><div><h3>Conclusion</h3><div>Microsections cut with DS in particular and thin sections in general are better suited for the intended cell classification system.</div></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"17 ","pages":"Article 100440"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical note: Impact of tissue section thickness on accuracy of cell classification with a deep learning network\",\"authors\":\"Ida Skovgaard Christiansen , Rasmus Hartvig , Thomas Hartvig Lindkær Jensen\",\"doi\":\"10.1016/j.jpi.2025.100440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><div>We are currently developing a cell classification system intended for routine histopathology. During observation, cells of interest are added to a deep learning (DL) network, which after training classifies the remaining cells of interest with high and immediately validatable accuracy. In this study, we identify the optimal histological microsection thickness for this process and describe in high detail the morphological differences introduced by variation in microsection thickness.</div></div><div><h3>Method</h3><div>From HE-stained digitized sections of liver cut manually at 5 thicknesses and on an automated microtome (DS), hepatocytes and non-hepatocytes were manually annotated and loaded into a DL convolutional neural network (ResNet). The network was trained at different settings to identify the thickness with optimal relation between number of training cells and validation accuracy. To shed interpretable light on the impact of thickness, exhaustive morphological details of the annotated cells were quantified and the differences between hepatocytes and non-hepatocytes were analyzed with random forest.</div></div><div><h3>Results</h3><div>Classifying hepatocytes from DS sections clearly resulted in highest validation accuracy with least number of cells and for the remaining thicknesses a trend towards thin sections being more efficient was observed. Random forest analysis generally identified variations in nuclear granularity as the most important features in distinguishing cells. In DS and the thinner tissue sections, nuclear granularity features were more distinguished.</div></div><div><h3>Conclusion</h3><div>Microsections cut with DS in particular and thin sections in general are better suited for the intended cell classification system.</div></div>\",\"PeriodicalId\":37769,\"journal\":{\"name\":\"Journal of Pathology Informatics\",\"volume\":\"17 \",\"pages\":\"Article 100440\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pathology Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2153353925000252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353925000252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Technical note: Impact of tissue section thickness on accuracy of cell classification with a deep learning network
Introduction
We are currently developing a cell classification system intended for routine histopathology. During observation, cells of interest are added to a deep learning (DL) network, which after training classifies the remaining cells of interest with high and immediately validatable accuracy. In this study, we identify the optimal histological microsection thickness for this process and describe in high detail the morphological differences introduced by variation in microsection thickness.
Method
From HE-stained digitized sections of liver cut manually at 5 thicknesses and on an automated microtome (DS), hepatocytes and non-hepatocytes were manually annotated and loaded into a DL convolutional neural network (ResNet). The network was trained at different settings to identify the thickness with optimal relation between number of training cells and validation accuracy. To shed interpretable light on the impact of thickness, exhaustive morphological details of the annotated cells were quantified and the differences between hepatocytes and non-hepatocytes were analyzed with random forest.
Results
Classifying hepatocytes from DS sections clearly resulted in highest validation accuracy with least number of cells and for the remaining thicknesses a trend towards thin sections being more efficient was observed. Random forest analysis generally identified variations in nuclear granularity as the most important features in distinguishing cells. In DS and the thinner tissue sections, nuclear granularity features were more distinguished.
Conclusion
Microsections cut with DS in particular and thin sections in general are better suited for the intended cell classification system.
期刊介绍:
The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.