Xin-miao Wu , Cui-na Shi , Kai Liu , Xiao-yi Hu , Qiu-li He , Hao Yao , Di Fan , Da-qing Ma , Jian-jun Yang , Jin-chun Shen , Mu-huo Ji
{"title":"小鼠海马CA1的兴奋性降低和抑制性传递增加驱动神经炎症诱导的认知障碍","authors":"Xin-miao Wu , Cui-na Shi , Kai Liu , Xiao-yi Hu , Qiu-li He , Hao Yao , Di Fan , Da-qing Ma , Jian-jun Yang , Jin-chun Shen , Mu-huo Ji","doi":"10.1016/j.bbi.2025.04.027","DOIUrl":null,"url":null,"abstract":"<div><div>Neuroinflammation is one of crucial pathogenic mechanisms underlying Alzheimer’s disease, sepsis-associated encephalopathy, and postoperative cognitive dysfunction. These diseases or conditions are often accompanied by typical clinical manifestations of cognitive impairments, including impaired learning and memory but underlying mechanisms are unknown. Hence, effective treatments are not available. In the current study, mice received intraperitoneal administrations of LPS (0.5 mg/kg, daily, Escherichia coli<!--> <!-->O55:B5) for seven consecutive days and after which, different cohorts were used for behavioral assessments with open field, Y maze, and novel object recognition test or for electrophysiology recordings of mEPSC, mIPSC or LTP in <em>ex vivo</em> preparations. Their hippocampi were harvested for immunostaining or Western blotting of PSD95, vGLUT1, vGAT, gephyrin, PV, and SST. <em>In vivo</em> optical fiber calcium recording was used to evaluate the neuronal excitability. During the early stage of neuroinflammation induced by LPS, there was a decrease of excitatory afferent synapses and transmission in the CA1. During the later stage of neuroinflammation, there was an increase of inhibitory afferent synapses and transmission in the CA1, resulting in excessive inhibition on excitatory neurons. Both of them contributed to the decreased hippocampal neuronal excitability and impaired LTP, ultimately leading to cognitive impairments. Overexpression of CREB in the early stage or inactivation of PV-positive interneurons in the later stage in the CA1 both improved cognitive impairments. Our work suggests that negating decreased excitatory and increased inhibitory afferent in the hippocampus may improve cognitive impairments relate to neuroinflammation associated with neurological diseases.</div></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":"128 ","pages":"Pages 416-428"},"PeriodicalIF":8.8000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decreased excitatory and increased inhibitory transmission in the hippocampal CA1 drive neuroinflammation-induced cognitive impairments in mice\",\"authors\":\"Xin-miao Wu , Cui-na Shi , Kai Liu , Xiao-yi Hu , Qiu-li He , Hao Yao , Di Fan , Da-qing Ma , Jian-jun Yang , Jin-chun Shen , Mu-huo Ji\",\"doi\":\"10.1016/j.bbi.2025.04.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neuroinflammation is one of crucial pathogenic mechanisms underlying Alzheimer’s disease, sepsis-associated encephalopathy, and postoperative cognitive dysfunction. These diseases or conditions are often accompanied by typical clinical manifestations of cognitive impairments, including impaired learning and memory but underlying mechanisms are unknown. Hence, effective treatments are not available. In the current study, mice received intraperitoneal administrations of LPS (0.5 mg/kg, daily, Escherichia coli<!--> <!-->O55:B5) for seven consecutive days and after which, different cohorts were used for behavioral assessments with open field, Y maze, and novel object recognition test or for electrophysiology recordings of mEPSC, mIPSC or LTP in <em>ex vivo</em> preparations. Their hippocampi were harvested for immunostaining or Western blotting of PSD95, vGLUT1, vGAT, gephyrin, PV, and SST. <em>In vivo</em> optical fiber calcium recording was used to evaluate the neuronal excitability. During the early stage of neuroinflammation induced by LPS, there was a decrease of excitatory afferent synapses and transmission in the CA1. During the later stage of neuroinflammation, there was an increase of inhibitory afferent synapses and transmission in the CA1, resulting in excessive inhibition on excitatory neurons. Both of them contributed to the decreased hippocampal neuronal excitability and impaired LTP, ultimately leading to cognitive impairments. Overexpression of CREB in the early stage or inactivation of PV-positive interneurons in the later stage in the CA1 both improved cognitive impairments. Our work suggests that negating decreased excitatory and increased inhibitory afferent in the hippocampus may improve cognitive impairments relate to neuroinflammation associated with neurological diseases.</div></div>\",\"PeriodicalId\":9199,\"journal\":{\"name\":\"Brain, Behavior, and Immunity\",\"volume\":\"128 \",\"pages\":\"Pages 416-428\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain, Behavior, and Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889159125001643\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159125001643","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Decreased excitatory and increased inhibitory transmission in the hippocampal CA1 drive neuroinflammation-induced cognitive impairments in mice
Neuroinflammation is one of crucial pathogenic mechanisms underlying Alzheimer’s disease, sepsis-associated encephalopathy, and postoperative cognitive dysfunction. These diseases or conditions are often accompanied by typical clinical manifestations of cognitive impairments, including impaired learning and memory but underlying mechanisms are unknown. Hence, effective treatments are not available. In the current study, mice received intraperitoneal administrations of LPS (0.5 mg/kg, daily, Escherichia coli O55:B5) for seven consecutive days and after which, different cohorts were used for behavioral assessments with open field, Y maze, and novel object recognition test or for electrophysiology recordings of mEPSC, mIPSC or LTP in ex vivo preparations. Their hippocampi were harvested for immunostaining or Western blotting of PSD95, vGLUT1, vGAT, gephyrin, PV, and SST. In vivo optical fiber calcium recording was used to evaluate the neuronal excitability. During the early stage of neuroinflammation induced by LPS, there was a decrease of excitatory afferent synapses and transmission in the CA1. During the later stage of neuroinflammation, there was an increase of inhibitory afferent synapses and transmission in the CA1, resulting in excessive inhibition on excitatory neurons. Both of them contributed to the decreased hippocampal neuronal excitability and impaired LTP, ultimately leading to cognitive impairments. Overexpression of CREB in the early stage or inactivation of PV-positive interneurons in the later stage in the CA1 both improved cognitive impairments. Our work suggests that negating decreased excitatory and increased inhibitory afferent in the hippocampus may improve cognitive impairments relate to neuroinflammation associated with neurological diseases.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.