{"title":"利用机器学习算法对太阳辐射数据进行水平到倾斜的转换","authors":"Ali Naci Celik , Bahadır Sarman , Kemal Polat","doi":"10.1016/j.engappai.2025.110951","DOIUrl":null,"url":null,"abstract":"<div><div>Solar radiation is the main input of system design algorithms in solar energy engineering. Solar radiation is usually measured on horizontal surfaces. However, in majority of solar energy applications such as photovoltaics, surfaces are either fixed at certain angles or continuously track the sun for maximizing energy input. Therefore, converting solar radiation data from horizontal to tilted surfaces is essential. Conventionally, conversion of solar radiation from horizontal to tilted is carried out using analytical methods. As with many other disciplines in science and technology, machine learning has recently been successfully applied also to solar radiation modelling to solve various problems such as in-advance forecasting of solar radiation. In the present article, solar radiation collected on horizontal surface is converted to tilted surface by machine learning algorithms and compared to solar radiation measured at a tilted surface. Eight different machine learning algorithms have been presently used for the conversion of solar radiation data. Accuracy of the models has been assessed based on a total of seven statistical metrics commonly used in literature. Overall, extra trees algorithm led to the best results as indicated by the statistical metrics used, for example, the mean absolute error of 7.3219 and coefficient of determination 0.9964. Based on the results presently obtained, it is demonstrated that machine learning led to an improved prediction when compared to the analytical models. The present research highlights the crucial significance of such advanced techniques, emphasizing their potential to drive a paradigm shift in solar energy engineering.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"153 ","pages":"Article 110951"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Horizontal-to-tilted conversion of solar radiation data using machine learning algorithms\",\"authors\":\"Ali Naci Celik , Bahadır Sarman , Kemal Polat\",\"doi\":\"10.1016/j.engappai.2025.110951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solar radiation is the main input of system design algorithms in solar energy engineering. Solar radiation is usually measured on horizontal surfaces. However, in majority of solar energy applications such as photovoltaics, surfaces are either fixed at certain angles or continuously track the sun for maximizing energy input. Therefore, converting solar radiation data from horizontal to tilted surfaces is essential. Conventionally, conversion of solar radiation from horizontal to tilted is carried out using analytical methods. As with many other disciplines in science and technology, machine learning has recently been successfully applied also to solar radiation modelling to solve various problems such as in-advance forecasting of solar radiation. In the present article, solar radiation collected on horizontal surface is converted to tilted surface by machine learning algorithms and compared to solar radiation measured at a tilted surface. Eight different machine learning algorithms have been presently used for the conversion of solar radiation data. Accuracy of the models has been assessed based on a total of seven statistical metrics commonly used in literature. Overall, extra trees algorithm led to the best results as indicated by the statistical metrics used, for example, the mean absolute error of 7.3219 and coefficient of determination 0.9964. Based on the results presently obtained, it is demonstrated that machine learning led to an improved prediction when compared to the analytical models. The present research highlights the crucial significance of such advanced techniques, emphasizing their potential to drive a paradigm shift in solar energy engineering.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"153 \",\"pages\":\"Article 110951\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197625009510\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625009510","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Horizontal-to-tilted conversion of solar radiation data using machine learning algorithms
Solar radiation is the main input of system design algorithms in solar energy engineering. Solar radiation is usually measured on horizontal surfaces. However, in majority of solar energy applications such as photovoltaics, surfaces are either fixed at certain angles or continuously track the sun for maximizing energy input. Therefore, converting solar radiation data from horizontal to tilted surfaces is essential. Conventionally, conversion of solar radiation from horizontal to tilted is carried out using analytical methods. As with many other disciplines in science and technology, machine learning has recently been successfully applied also to solar radiation modelling to solve various problems such as in-advance forecasting of solar radiation. In the present article, solar radiation collected on horizontal surface is converted to tilted surface by machine learning algorithms and compared to solar radiation measured at a tilted surface. Eight different machine learning algorithms have been presently used for the conversion of solar radiation data. Accuracy of the models has been assessed based on a total of seven statistical metrics commonly used in literature. Overall, extra trees algorithm led to the best results as indicated by the statistical metrics used, for example, the mean absolute error of 7.3219 and coefficient of determination 0.9964. Based on the results presently obtained, it is demonstrated that machine learning led to an improved prediction when compared to the analytical models. The present research highlights the crucial significance of such advanced techniques, emphasizing their potential to drive a paradigm shift in solar energy engineering.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.