{"title":"tm掺杂CdTe纳米片的电子、光学和磁性:第一性原理计算","authors":"N.A. Ismayilova , Z.A. Jahangirli","doi":"10.1016/j.jmmm.2025.173079","DOIUrl":null,"url":null,"abstract":"<div><div>The electronic, magnetic, and optical properties of two-dimensional (2D) CdTe nanosheets (N.S.) with substitutional doping of transition metal atoms (Cr, Mn, Fe, Co, V, Cu) were investigated using density functional theory (DFT). To determine the stable magnetic phases, the total energies of doped nanosheets were optimized for various ferromagnetic and antiferromagnetic configurations. The findings reveal that, while the pristine nanosheet exhibits a non-magnetic, wide-bandgap (3.28 eV) semiconductor behavior, doping with transition metal atoms induces magnetic moments, leading to structural reconstruction around the dopant and its neighboring atoms. The Cr- and Co-doped CdTe nanosheets, exhibiting 100 % spin polarization, are promising candidates for spintronic devices due to their strong half-metallic ferromagnetic properties. The optical spectra of both pure and transition metal-doped CdTe nanosheets were calculated along the z-axis as a function of wavelength (λ). The computed optical properties include the complex dielectric function and absorption as a function of wavelength. These interesting results suggest that TM-doped CdTe nanosheets hold potential for applications in nanodevices and spintronic devices based on low-dimensional nanostructures.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"626 ","pages":"Article 173079"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic, optical and magnetic properties of TM-doped CdTe nanosheet: First-principles calculations\",\"authors\":\"N.A. Ismayilova , Z.A. Jahangirli\",\"doi\":\"10.1016/j.jmmm.2025.173079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The electronic, magnetic, and optical properties of two-dimensional (2D) CdTe nanosheets (N.S.) with substitutional doping of transition metal atoms (Cr, Mn, Fe, Co, V, Cu) were investigated using density functional theory (DFT). To determine the stable magnetic phases, the total energies of doped nanosheets were optimized for various ferromagnetic and antiferromagnetic configurations. The findings reveal that, while the pristine nanosheet exhibits a non-magnetic, wide-bandgap (3.28 eV) semiconductor behavior, doping with transition metal atoms induces magnetic moments, leading to structural reconstruction around the dopant and its neighboring atoms. The Cr- and Co-doped CdTe nanosheets, exhibiting 100 % spin polarization, are promising candidates for spintronic devices due to their strong half-metallic ferromagnetic properties. The optical spectra of both pure and transition metal-doped CdTe nanosheets were calculated along the z-axis as a function of wavelength (λ). The computed optical properties include the complex dielectric function and absorption as a function of wavelength. These interesting results suggest that TM-doped CdTe nanosheets hold potential for applications in nanodevices and spintronic devices based on low-dimensional nanostructures.</div></div>\",\"PeriodicalId\":366,\"journal\":{\"name\":\"Journal of Magnetism and Magnetic Materials\",\"volume\":\"626 \",\"pages\":\"Article 173079\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetism and Magnetic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304885325003117\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885325003117","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Electronic, optical and magnetic properties of TM-doped CdTe nanosheet: First-principles calculations
The electronic, magnetic, and optical properties of two-dimensional (2D) CdTe nanosheets (N.S.) with substitutional doping of transition metal atoms (Cr, Mn, Fe, Co, V, Cu) were investigated using density functional theory (DFT). To determine the stable magnetic phases, the total energies of doped nanosheets were optimized for various ferromagnetic and antiferromagnetic configurations. The findings reveal that, while the pristine nanosheet exhibits a non-magnetic, wide-bandgap (3.28 eV) semiconductor behavior, doping with transition metal atoms induces magnetic moments, leading to structural reconstruction around the dopant and its neighboring atoms. The Cr- and Co-doped CdTe nanosheets, exhibiting 100 % spin polarization, are promising candidates for spintronic devices due to their strong half-metallic ferromagnetic properties. The optical spectra of both pure and transition metal-doped CdTe nanosheets were calculated along the z-axis as a function of wavelength (λ). The computed optical properties include the complex dielectric function and absorption as a function of wavelength. These interesting results suggest that TM-doped CdTe nanosheets hold potential for applications in nanodevices and spintronic devices based on low-dimensional nanostructures.
期刊介绍:
The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public.
Main Categories:
Full-length articles:
Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged.
In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications.
The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications.
The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism.
Review articles:
Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.