Maria Nazeer MS , Nabi Shah PhD , Saif Ullah MS , Muhammad Ikram PhD , Muhammad Imran Amirzada PhD , Abdulmohsin J. Alamoudi PhD , Meshal Alshamrani PhD , Abdul Jabbar Shah PhD
{"title":"通过醛固酮合成酶基因抑制熊果苷的毒理学分析和利尿潜力","authors":"Maria Nazeer MS , Nabi Shah PhD , Saif Ullah MS , Muhammad Ikram PhD , Muhammad Imran Amirzada PhD , Abdulmohsin J. Alamoudi PhD , Meshal Alshamrani PhD , Abdul Jabbar Shah PhD","doi":"10.1016/j.lfs.2025.123661","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>Arbutin (ARB), a natural polyphenol isolated from the bearberry plant <em>Arctostaphylos uva-ursi</em>, has been studied for its diverse pharmacological activities including anti-diabetic, cardioprotective and anti-inflammatory effects. This study aimed to evaluate arbutin’s diuretic activity, focusing on its impact on aldosterone synthase gene expression and its toxicity profile.</div></div><div><h3>Material and methods</h3><div>Acute toxicity was assessed using single doses ranging from 500 to 9000 mg/kg and sub-acute toxicity with doses of 375 and 750 mg/kg over 14 days. To evaluate acute diuretic activity, ARB was administered in three doses (25, 50 and 75 mg/kg i.p) alongside standard groups, furosemide (FUR) 10 mg/kg i.p and Spironolactone (SPIR) 25 mg/kg i.p. In sub-acute diuretic study, treatment was administered for seven days, followed by blood collection and adrenal dissection for gene expression analysis.</div></div><div><h3>Key findings</h3><div>Acute toxicity studies revealed that ARB is well-tolerated up to 7000 mg/kg with no significant changes in organ and body weight. However, sub-acute studies showed minor changes in leukocyte count, alkaline phosphatase (ALP), alanine aminotransferase (ALT) and triglycerides (TGs) at high doses while histopathological evaluations revealed no severe organ damage. The diuretic index and electrolyte analysis confirmed the potential of ARB as diuretic and saluretic with reduced risk of hyperuricemia and hyperkalemia. Gene expression studies showed non-selective downregulation of aldosterone synthase gene (CYP11B2) and 11β-hydroxylase (CYP11B1). While the effects on 17α-hydroxylase (CYP17A1) were less pronounced than SPIR, indicating fewer possible anti-androgenic effects.</div></div><div><h3>Significance</h3><div>Our findings suggest that ARB is a promising diuretic agent with a favorable safety profile.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"373 ","pages":"Article 123661"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxicological profiling and diuretic potential of arbutin via aldosterone synthase gene inhibition\",\"authors\":\"Maria Nazeer MS , Nabi Shah PhD , Saif Ullah MS , Muhammad Ikram PhD , Muhammad Imran Amirzada PhD , Abdulmohsin J. Alamoudi PhD , Meshal Alshamrani PhD , Abdul Jabbar Shah PhD\",\"doi\":\"10.1016/j.lfs.2025.123661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Aims</h3><div>Arbutin (ARB), a natural polyphenol isolated from the bearberry plant <em>Arctostaphylos uva-ursi</em>, has been studied for its diverse pharmacological activities including anti-diabetic, cardioprotective and anti-inflammatory effects. This study aimed to evaluate arbutin’s diuretic activity, focusing on its impact on aldosterone synthase gene expression and its toxicity profile.</div></div><div><h3>Material and methods</h3><div>Acute toxicity was assessed using single doses ranging from 500 to 9000 mg/kg and sub-acute toxicity with doses of 375 and 750 mg/kg over 14 days. To evaluate acute diuretic activity, ARB was administered in three doses (25, 50 and 75 mg/kg i.p) alongside standard groups, furosemide (FUR) 10 mg/kg i.p and Spironolactone (SPIR) 25 mg/kg i.p. In sub-acute diuretic study, treatment was administered for seven days, followed by blood collection and adrenal dissection for gene expression analysis.</div></div><div><h3>Key findings</h3><div>Acute toxicity studies revealed that ARB is well-tolerated up to 7000 mg/kg with no significant changes in organ and body weight. However, sub-acute studies showed minor changes in leukocyte count, alkaline phosphatase (ALP), alanine aminotransferase (ALT) and triglycerides (TGs) at high doses while histopathological evaluations revealed no severe organ damage. The diuretic index and electrolyte analysis confirmed the potential of ARB as diuretic and saluretic with reduced risk of hyperuricemia and hyperkalemia. Gene expression studies showed non-selective downregulation of aldosterone synthase gene (CYP11B2) and 11β-hydroxylase (CYP11B1). While the effects on 17α-hydroxylase (CYP17A1) were less pronounced than SPIR, indicating fewer possible anti-androgenic effects.</div></div><div><h3>Significance</h3><div>Our findings suggest that ARB is a promising diuretic agent with a favorable safety profile.</div></div>\",\"PeriodicalId\":18122,\"journal\":{\"name\":\"Life sciences\",\"volume\":\"373 \",\"pages\":\"Article 123661\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024320525002966\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320525002966","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Toxicological profiling and diuretic potential of arbutin via aldosterone synthase gene inhibition
Aims
Arbutin (ARB), a natural polyphenol isolated from the bearberry plant Arctostaphylos uva-ursi, has been studied for its diverse pharmacological activities including anti-diabetic, cardioprotective and anti-inflammatory effects. This study aimed to evaluate arbutin’s diuretic activity, focusing on its impact on aldosterone synthase gene expression and its toxicity profile.
Material and methods
Acute toxicity was assessed using single doses ranging from 500 to 9000 mg/kg and sub-acute toxicity with doses of 375 and 750 mg/kg over 14 days. To evaluate acute diuretic activity, ARB was administered in three doses (25, 50 and 75 mg/kg i.p) alongside standard groups, furosemide (FUR) 10 mg/kg i.p and Spironolactone (SPIR) 25 mg/kg i.p. In sub-acute diuretic study, treatment was administered for seven days, followed by blood collection and adrenal dissection for gene expression analysis.
Key findings
Acute toxicity studies revealed that ARB is well-tolerated up to 7000 mg/kg with no significant changes in organ and body weight. However, sub-acute studies showed minor changes in leukocyte count, alkaline phosphatase (ALP), alanine aminotransferase (ALT) and triglycerides (TGs) at high doses while histopathological evaluations revealed no severe organ damage. The diuretic index and electrolyte analysis confirmed the potential of ARB as diuretic and saluretic with reduced risk of hyperuricemia and hyperkalemia. Gene expression studies showed non-selective downregulation of aldosterone synthase gene (CYP11B2) and 11β-hydroxylase (CYP11B1). While the effects on 17α-hydroxylase (CYP17A1) were less pronounced than SPIR, indicating fewer possible anti-androgenic effects.
Significance
Our findings suggest that ARB is a promising diuretic agent with a favorable safety profile.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.