Wenjie Hou , Xingru Shang , Xiaoxia Hao , Chunran Pan , Zehang Zheng , Yiwen Zhang , Xiaofeng Deng , Ruimin Chi , Jiawei Liu , Fengjing Guo , Kai Sun , Tao Xu
{"title":"shp2介导的ROS激活可诱导骨关节炎的软骨细胞凋亡,并可通过低强度脉冲超声减弱","authors":"Wenjie Hou , Xingru Shang , Xiaoxia Hao , Chunran Pan , Zehang Zheng , Yiwen Zhang , Xiaofeng Deng , Ruimin Chi , Jiawei Liu , Fengjing Guo , Kai Sun , Tao Xu","doi":"10.1016/j.jot.2025.04.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Paraptosis is a novel form of programmed cell death, generally caused by disrupted proteostasis or alterations of redox homeostasis. However, its impact and underlying mechanisms on the pathology of osteoarthritis (OA) are still unclear. This study aimed to investigate the role and regulatory mechanism of SHP2 in chondrocyte paraptosis and the effects influenced by low-intensity pulsed ultrasound (LIPUS).</div></div><div><h3>Methods</h3><div>SHP2, a MAPK upstream intermediary, has been identified as one of the critical targets of IL-1β-induced paraptosis in the GEO and GeneCard databases. The expression of SHP2 in chondrocytes was regulated by either siRNA knockdown or plasmid overexpression. Additionally, adeno-associated viruses were injected into the knee joints of rats to explore whether SHP2 plays a role in the development of OA. The impact of LIPUS on paraptosis and OA was examined in IL-1β-induced chondrocytes and a post-traumatic OA model, with SHP2 regulation assessed at both cellular and animal levels.</div></div><div><h3>Results</h3><div>An increase in cellular reactive oxygen species (ROS) caused by IL-1β halts the growth of chondrocytes and induces paraptosis in the chondrocytes. IL-1β-induced paraptosis, manifested as endoplasmic reticulum (ER)-derived vacuolization, was mediated by ROS-mediated ER stress and MAPK activation. SHP2 facilitates ROS production, thereby exacerbating the chondrocytes paraptosis. SHP2 knockdown and ROS inhibition effectively reduced this process and significantly mitigated inflammation and cartilage degeneration. Furthermore, we discovered that LIPUS delayed OA progression by inhibiting the activation of the MAPK pathway, ER stress, and ER-derived vacuoles in chondrocytes, all of which play critical roles in paraptosis, through the downregulation of SHP2 expression. Results on animals showed that LIPUS inhibited cartilage degeneration and alleviated OA progression.</div></div><div><h3>Conclusion</h3><div>SHP2 exacerbates IL-1β-induced oxidative stress and the subsequent paraptosis in chondrocytes, promoting OA progression. LIPUS mitigates paraptosis by modulating SHP2, which in turn slows OA progression.</div></div><div><h3>The translational potential of this article</h3><div>This study indicates that a novel SHP2-mediated cell death mechanism, paraptosis, plays a role in post-traumatic OA progression. LIPUS helps maintain cartilage-subchondral bone unit integrity by targeting SHP2 inhibition. SHP2 emerges as a potential therapeutic target, while LIPUS provides a promising non-invasive approach for treating trauma-related OA.</div></div>","PeriodicalId":16636,"journal":{"name":"Journal of Orthopaedic Translation","volume":"52 ","pages":"Pages 233-248"},"PeriodicalIF":5.9000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SHP2-mediated ROS activation induces chondrocyte paraptosis in osteoarthritis and is attenuated by low-intensity pulsed ultrasound\",\"authors\":\"Wenjie Hou , Xingru Shang , Xiaoxia Hao , Chunran Pan , Zehang Zheng , Yiwen Zhang , Xiaofeng Deng , Ruimin Chi , Jiawei Liu , Fengjing Guo , Kai Sun , Tao Xu\",\"doi\":\"10.1016/j.jot.2025.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Paraptosis is a novel form of programmed cell death, generally caused by disrupted proteostasis or alterations of redox homeostasis. However, its impact and underlying mechanisms on the pathology of osteoarthritis (OA) are still unclear. This study aimed to investigate the role and regulatory mechanism of SHP2 in chondrocyte paraptosis and the effects influenced by low-intensity pulsed ultrasound (LIPUS).</div></div><div><h3>Methods</h3><div>SHP2, a MAPK upstream intermediary, has been identified as one of the critical targets of IL-1β-induced paraptosis in the GEO and GeneCard databases. The expression of SHP2 in chondrocytes was regulated by either siRNA knockdown or plasmid overexpression. Additionally, adeno-associated viruses were injected into the knee joints of rats to explore whether SHP2 plays a role in the development of OA. The impact of LIPUS on paraptosis and OA was examined in IL-1β-induced chondrocytes and a post-traumatic OA model, with SHP2 regulation assessed at both cellular and animal levels.</div></div><div><h3>Results</h3><div>An increase in cellular reactive oxygen species (ROS) caused by IL-1β halts the growth of chondrocytes and induces paraptosis in the chondrocytes. IL-1β-induced paraptosis, manifested as endoplasmic reticulum (ER)-derived vacuolization, was mediated by ROS-mediated ER stress and MAPK activation. SHP2 facilitates ROS production, thereby exacerbating the chondrocytes paraptosis. SHP2 knockdown and ROS inhibition effectively reduced this process and significantly mitigated inflammation and cartilage degeneration. Furthermore, we discovered that LIPUS delayed OA progression by inhibiting the activation of the MAPK pathway, ER stress, and ER-derived vacuoles in chondrocytes, all of which play critical roles in paraptosis, through the downregulation of SHP2 expression. Results on animals showed that LIPUS inhibited cartilage degeneration and alleviated OA progression.</div></div><div><h3>Conclusion</h3><div>SHP2 exacerbates IL-1β-induced oxidative stress and the subsequent paraptosis in chondrocytes, promoting OA progression. LIPUS mitigates paraptosis by modulating SHP2, which in turn slows OA progression.</div></div><div><h3>The translational potential of this article</h3><div>This study indicates that a novel SHP2-mediated cell death mechanism, paraptosis, plays a role in post-traumatic OA progression. LIPUS helps maintain cartilage-subchondral bone unit integrity by targeting SHP2 inhibition. SHP2 emerges as a potential therapeutic target, while LIPUS provides a promising non-invasive approach for treating trauma-related OA.</div></div>\",\"PeriodicalId\":16636,\"journal\":{\"name\":\"Journal of Orthopaedic Translation\",\"volume\":\"52 \",\"pages\":\"Pages 233-248\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Orthopaedic Translation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214031X25000646\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Translation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214031X25000646","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
摘要
背景自噬是一种新型的程序性细胞死亡,通常由蛋白稳态紊乱或氧化还原稳态改变引起。然而,其对骨关节炎(OA)病理的影响和内在机制仍不清楚。本研究旨在探讨SHP2在软骨细胞凋亡中的作用和调控机制以及低强度脉冲超声(LIPUS)对其的影响。方法SHP2是MAPK的上游中间体,在GEO和GeneCard数据库中已被确定为IL-1β诱导凋亡的关键靶点之一。SHP2在软骨细胞中的表达受siRNA敲除或质粒过表达调控。此外,还向大鼠膝关节中注射了腺相关病毒,以探讨SHP2是否在OA的发展过程中发挥作用。结果 IL-1β引起的细胞活性氧(ROS)增加会阻止软骨细胞的生长,并诱导软骨细胞发生凋亡。IL-1β诱导的凋亡表现为内质网(ER)产生的空泡化,是由ROS介导的ER应激和MAPK活化介导的。SHP2促进了ROS的产生,从而加剧了软骨细胞的aptosis。敲除 SHP2 和抑制 ROS 可有效减少这一过程,并显著减轻炎症和软骨退化。此外,我们还发现,LIPUS通过下调SHP2的表达,抑制了软骨细胞中MAPK通路的激活、ER应激和ER衍生空泡,从而延缓了OA的进展。动物实验结果表明,LIPUS 可抑制软骨变性,缓解 OA 进展。LIPUS通过调节SHP2减轻副aptosis,进而减缓OA的进展。本文的转化潜力这项研究表明,SHP2介导的一种新型细胞死亡机制--副aptosis在创伤后OA进展中发挥了作用。LIPUS通过靶向抑制SHP2有助于维持软骨-软骨下骨单元的完整性。SHP2 成为潜在的治疗靶点,而 LIPUS 则为治疗创伤相关的 OA 提供了一种前景广阔的非侵入性方法。
SHP2-mediated ROS activation induces chondrocyte paraptosis in osteoarthritis and is attenuated by low-intensity pulsed ultrasound
Background
Paraptosis is a novel form of programmed cell death, generally caused by disrupted proteostasis or alterations of redox homeostasis. However, its impact and underlying mechanisms on the pathology of osteoarthritis (OA) are still unclear. This study aimed to investigate the role and regulatory mechanism of SHP2 in chondrocyte paraptosis and the effects influenced by low-intensity pulsed ultrasound (LIPUS).
Methods
SHP2, a MAPK upstream intermediary, has been identified as one of the critical targets of IL-1β-induced paraptosis in the GEO and GeneCard databases. The expression of SHP2 in chondrocytes was regulated by either siRNA knockdown or plasmid overexpression. Additionally, adeno-associated viruses were injected into the knee joints of rats to explore whether SHP2 plays a role in the development of OA. The impact of LIPUS on paraptosis and OA was examined in IL-1β-induced chondrocytes and a post-traumatic OA model, with SHP2 regulation assessed at both cellular and animal levels.
Results
An increase in cellular reactive oxygen species (ROS) caused by IL-1β halts the growth of chondrocytes and induces paraptosis in the chondrocytes. IL-1β-induced paraptosis, manifested as endoplasmic reticulum (ER)-derived vacuolization, was mediated by ROS-mediated ER stress and MAPK activation. SHP2 facilitates ROS production, thereby exacerbating the chondrocytes paraptosis. SHP2 knockdown and ROS inhibition effectively reduced this process and significantly mitigated inflammation and cartilage degeneration. Furthermore, we discovered that LIPUS delayed OA progression by inhibiting the activation of the MAPK pathway, ER stress, and ER-derived vacuoles in chondrocytes, all of which play critical roles in paraptosis, through the downregulation of SHP2 expression. Results on animals showed that LIPUS inhibited cartilage degeneration and alleviated OA progression.
Conclusion
SHP2 exacerbates IL-1β-induced oxidative stress and the subsequent paraptosis in chondrocytes, promoting OA progression. LIPUS mitigates paraptosis by modulating SHP2, which in turn slows OA progression.
The translational potential of this article
This study indicates that a novel SHP2-mediated cell death mechanism, paraptosis, plays a role in post-traumatic OA progression. LIPUS helps maintain cartilage-subchondral bone unit integrity by targeting SHP2 inhibition. SHP2 emerges as a potential therapeutic target, while LIPUS provides a promising non-invasive approach for treating trauma-related OA.
期刊介绍:
The Journal of Orthopaedic Translation (JOT) is the official peer-reviewed, open access journal of the Chinese Speaking Orthopaedic Society (CSOS) and the International Chinese Musculoskeletal Research Society (ICMRS). It is published quarterly, in January, April, July and October, by Elsevier.