Mykhailo Klymenko , Thong Hoang , Xiwei Xu , Zhenchang Xing , Muhammad Usman , Qinghua Lu , Liming Zhu
{"title":"设计量子人工智能系统的架构模式","authors":"Mykhailo Klymenko , Thong Hoang , Xiwei Xu , Zhenchang Xing , Muhammad Usman , Qinghua Lu , Liming Zhu","doi":"10.1016/j.jss.2025.112456","DOIUrl":null,"url":null,"abstract":"<div><div>Utilising quantum computing technology to enhance artificial intelligence systems is expected to improve training and inference times, increase robustness against noise and adversarial attacks, and reduce the number of parameters without compromising accuracy. However, moving beyond proof-of-concept or simulations to develop practical applications of these systems while ensuring high software quality faces significant challenges due to the limitations of quantum hardware and the underdeveloped knowledge base in software engineering for such systems. In this work, we have conducted a systematic mapping study to identify the challenges and solutions associated with the software architecture of quantum-enhanced artificial intelligence systems. The results of the systematic mapping study reveal several architectural patterns that describe how quantum components can be integrated into inference engines, as well as middleware patterns that facilitate communication between classical and quantum components. Each pattern realises a trade-off between various software quality attributes, such as efficiency, scalability, trainability, simplicity, portability, and deployability. The outcomes of this work have been compiled into a catalogue of architectural patterns.</div><div><em>Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science Board</em>.</div></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"227 ","pages":"Article 112456"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Architectural patterns for designing quantum artificial intelligence systems\",\"authors\":\"Mykhailo Klymenko , Thong Hoang , Xiwei Xu , Zhenchang Xing , Muhammad Usman , Qinghua Lu , Liming Zhu\",\"doi\":\"10.1016/j.jss.2025.112456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Utilising quantum computing technology to enhance artificial intelligence systems is expected to improve training and inference times, increase robustness against noise and adversarial attacks, and reduce the number of parameters without compromising accuracy. However, moving beyond proof-of-concept or simulations to develop practical applications of these systems while ensuring high software quality faces significant challenges due to the limitations of quantum hardware and the underdeveloped knowledge base in software engineering for such systems. In this work, we have conducted a systematic mapping study to identify the challenges and solutions associated with the software architecture of quantum-enhanced artificial intelligence systems. The results of the systematic mapping study reveal several architectural patterns that describe how quantum components can be integrated into inference engines, as well as middleware patterns that facilitate communication between classical and quantum components. Each pattern realises a trade-off between various software quality attributes, such as efficiency, scalability, trainability, simplicity, portability, and deployability. The outcomes of this work have been compiled into a catalogue of architectural patterns.</div><div><em>Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science Board</em>.</div></div>\",\"PeriodicalId\":51099,\"journal\":{\"name\":\"Journal of Systems and Software\",\"volume\":\"227 \",\"pages\":\"Article 112456\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems and Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0164121225001244\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0164121225001244","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Architectural patterns for designing quantum artificial intelligence systems
Utilising quantum computing technology to enhance artificial intelligence systems is expected to improve training and inference times, increase robustness against noise and adversarial attacks, and reduce the number of parameters without compromising accuracy. However, moving beyond proof-of-concept or simulations to develop practical applications of these systems while ensuring high software quality faces significant challenges due to the limitations of quantum hardware and the underdeveloped knowledge base in software engineering for such systems. In this work, we have conducted a systematic mapping study to identify the challenges and solutions associated with the software architecture of quantum-enhanced artificial intelligence systems. The results of the systematic mapping study reveal several architectural patterns that describe how quantum components can be integrated into inference engines, as well as middleware patterns that facilitate communication between classical and quantum components. Each pattern realises a trade-off between various software quality attributes, such as efficiency, scalability, trainability, simplicity, portability, and deployability. The outcomes of this work have been compiled into a catalogue of architectural patterns.
Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science Board.
期刊介绍:
The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to:
•Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution
•Agile, model-driven, service-oriented, open source and global software development
•Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems
•Human factors and management concerns of software development
•Data management and big data issues of software systems
•Metrics and evaluation, data mining of software development resources
•Business and economic aspects of software development processes
The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.