{"title":"斜水平磁场对对流轧辊的影响","authors":"Snehashish Sarkar , Sutapa Mandal , Pinaki Pal","doi":"10.1016/j.ijnonlinmec.2025.105111","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the effect of external horizontal magnetic field applied on the convection rolls obliquely (at an angle <span><math><mi>ϕ</mi></math></span> with the <span><math><mi>x</mi></math></span>-axis) in electrically conducting low Prandtl number fluids under the paradigm of the Rayleigh–Bénard convection by performing three-dimensional direct numerical simulations. The control parameters, namely, the Chandrasekhar number (<span><math><mi>Q</mi></math></span>) and the reduced Rayleigh number <span><math><mi>r</mi></math></span> (ratio of Rayleigh number to critical Rayleigh number), are varied in the ranges <span><math><mrow><mn>0</mn><mo>≤</mo><mi>Q</mi><mo>≤</mo><mn>1000</mn></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mn>20</mn></mrow></math></span> for the Prandtl numbers <span><math><mrow><mi>Pr</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn></mrow></math></span> and 0.2 by considering three horizontal aspect ratios (<span><math><mi>Γ</mi></math></span>): <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, 1 and 2. In the absence of the magnetic field, the convection starts in the form of steady rolls including the one parallel to the <span><math><mi>x</mi></math></span>-axis. As the oblique horizontal magnetic field is switched on at an angle <span><math><mrow><mi>ϕ</mi><mo>∈</mo><mrow><mo>(</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup><mo>,</mo><mspace></mspace><mn>9</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup><mo>]</mo></mrow></mrow></math></span> with the <span><math><mi>x</mi></math></span>-axis, it is observed that the Lorentz force generated by the component of the magnetic field transverse to the axis of the convection rolls inhibits convection. Thus, with the application of the magnetic field, the convection is suppressed and restarts for a higher Rayleigh number in the form of steady convection rolls. The rolls can be oriented at angles 0° (steady parallel rolls, SPR) or 45° (steady oblique rolls, SOR<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>) or 135° (steady oblique rolls, SOR<span><math><msup><mrow></mrow><mrow><mo>−</mo></mrow></msup></math></span>) with the <span><math><mi>x</mi></math></span>-axis depending on the choices of the parameters. A rich bifurcation structure consisting of standing and traveling flow patterns associated with these steady flow patterns for higher values <span><math><mi>r</mi></math></span> is investigated in detail. The oscillatory instability of the steady rolls is found to scale as <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span> with two distinct exponents, one each for weaker and stronger magnetic fields. The investigation reveals that for a given set of values of <span><math><mi>Q</mi></math></span> and <span><math><mi>Pr</mi></math></span>, the heat transfer is inhibited with the increase of <span><math><mi>ϕ</mi></math></span>.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"175 ","pages":"Article 105111"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of oblique horizontal magnetic field on convection rolls\",\"authors\":\"Snehashish Sarkar , Sutapa Mandal , Pinaki Pal\",\"doi\":\"10.1016/j.ijnonlinmec.2025.105111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the effect of external horizontal magnetic field applied on the convection rolls obliquely (at an angle <span><math><mi>ϕ</mi></math></span> with the <span><math><mi>x</mi></math></span>-axis) in electrically conducting low Prandtl number fluids under the paradigm of the Rayleigh–Bénard convection by performing three-dimensional direct numerical simulations. The control parameters, namely, the Chandrasekhar number (<span><math><mi>Q</mi></math></span>) and the reduced Rayleigh number <span><math><mi>r</mi></math></span> (ratio of Rayleigh number to critical Rayleigh number), are varied in the ranges <span><math><mrow><mn>0</mn><mo>≤</mo><mi>Q</mi><mo>≤</mo><mn>1000</mn></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mn>20</mn></mrow></math></span> for the Prandtl numbers <span><math><mrow><mi>Pr</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn></mrow></math></span> and 0.2 by considering three horizontal aspect ratios (<span><math><mi>Γ</mi></math></span>): <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, 1 and 2. In the absence of the magnetic field, the convection starts in the form of steady rolls including the one parallel to the <span><math><mi>x</mi></math></span>-axis. As the oblique horizontal magnetic field is switched on at an angle <span><math><mrow><mi>ϕ</mi><mo>∈</mo><mrow><mo>(</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup><mo>,</mo><mspace></mspace><mn>9</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup><mo>]</mo></mrow></mrow></math></span> with the <span><math><mi>x</mi></math></span>-axis, it is observed that the Lorentz force generated by the component of the magnetic field transverse to the axis of the convection rolls inhibits convection. Thus, with the application of the magnetic field, the convection is suppressed and restarts for a higher Rayleigh number in the form of steady convection rolls. The rolls can be oriented at angles 0° (steady parallel rolls, SPR) or 45° (steady oblique rolls, SOR<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>) or 135° (steady oblique rolls, SOR<span><math><msup><mrow></mrow><mrow><mo>−</mo></mrow></msup></math></span>) with the <span><math><mi>x</mi></math></span>-axis depending on the choices of the parameters. A rich bifurcation structure consisting of standing and traveling flow patterns associated with these steady flow patterns for higher values <span><math><mi>r</mi></math></span> is investigated in detail. The oscillatory instability of the steady rolls is found to scale as <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span> with two distinct exponents, one each for weaker and stronger magnetic fields. The investigation reveals that for a given set of values of <span><math><mi>Q</mi></math></span> and <span><math><mi>Pr</mi></math></span>, the heat transfer is inhibited with the increase of <span><math><mi>ϕ</mi></math></span>.</div></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":\"175 \",\"pages\":\"Article 105111\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002074622500099X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002074622500099X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Effect of oblique horizontal magnetic field on convection rolls
We investigate the effect of external horizontal magnetic field applied on the convection rolls obliquely (at an angle with the -axis) in electrically conducting low Prandtl number fluids under the paradigm of the Rayleigh–Bénard convection by performing three-dimensional direct numerical simulations. The control parameters, namely, the Chandrasekhar number () and the reduced Rayleigh number (ratio of Rayleigh number to critical Rayleigh number), are varied in the ranges and for the Prandtl numbers and 0.2 by considering three horizontal aspect ratios (): , 1 and 2. In the absence of the magnetic field, the convection starts in the form of steady rolls including the one parallel to the -axis. As the oblique horizontal magnetic field is switched on at an angle with the -axis, it is observed that the Lorentz force generated by the component of the magnetic field transverse to the axis of the convection rolls inhibits convection. Thus, with the application of the magnetic field, the convection is suppressed and restarts for a higher Rayleigh number in the form of steady convection rolls. The rolls can be oriented at angles 0° (steady parallel rolls, SPR) or 45° (steady oblique rolls, SOR) or 135° (steady oblique rolls, SOR) with the -axis depending on the choices of the parameters. A rich bifurcation structure consisting of standing and traveling flow patterns associated with these steady flow patterns for higher values is investigated in detail. The oscillatory instability of the steady rolls is found to scale as with two distinct exponents, one each for weaker and stronger magnetic fields. The investigation reveals that for a given set of values of and , the heat transfer is inhibited with the increase of .
期刊介绍:
The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear.
The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas.
Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.