Patrick Vallance , Ummatul Siddique , Ash Frazer , Peter Malliaras , Bill Vicenzino , Dawson J. Kidgell
{"title":"经颅磁刺激和电刺激技术用于测量影响持续性肌肉骨骼疾病患者运动输出的不同神经元群的兴奋性:范围回顾和证据的叙述综合","authors":"Patrick Vallance , Ummatul Siddique , Ash Frazer , Peter Malliaras , Bill Vicenzino , Dawson J. Kidgell","doi":"10.1016/j.jelekin.2025.103011","DOIUrl":null,"url":null,"abstract":"<div><div>Functional impairments are evident in persistent musculoskeletal (MSK) conditions, and linked to altered excitability of neuronal elements contributing to motor output. In MSK conditions, transcranial magnetic stimulation (TMS) or electrical stimulation (ES) techniques have been used to investigate intracortical, corticospinal, spinal and neuromuscular excitability, which influence the efficacy of descending volley transmission to produce movement. This review compiled studies using TMS or ES to investigate neuronal excitability in persistent MSK conditions, to identify techniques used, and to synthesis evidence for neural deficits. We used narrative synthesis to summarise individual study findings. We included 60 studies; 52/60 used at least one TMS technique, and more frequently measured corticospinal tract excitability (48/52). 15/60 studies used at least one ES technique, and more frequently measured neuromuscular excitability (15/15). In tendinopathy, excitability was assessed for a range of distinct neurones; no study measured neuromuscular excitability in low back pain, osteoarthritis or shoulder pain, nor spinal or intracortical excitability in shoulder pain. This review identified a range of TMS and ES techniques used to assess excitability of neural elements. It provides insight for specific deficits contributing to functional impairments in certain persistent MSK conditions, while highlighting evidence gaps hindering the ability to draw meaningful inferences.</div></div>","PeriodicalId":56123,"journal":{"name":"Journal of Electromyography and Kinesiology","volume":"82 ","pages":"Article 103011"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcranial magnetic stimulation and electrical stimulation techniques used to measure the excitability of distinct neuronal populations that influence motor output in people with persistent musculoskeletal conditions: A scoping review and narrative synthesis of evidence\",\"authors\":\"Patrick Vallance , Ummatul Siddique , Ash Frazer , Peter Malliaras , Bill Vicenzino , Dawson J. Kidgell\",\"doi\":\"10.1016/j.jelekin.2025.103011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Functional impairments are evident in persistent musculoskeletal (MSK) conditions, and linked to altered excitability of neuronal elements contributing to motor output. In MSK conditions, transcranial magnetic stimulation (TMS) or electrical stimulation (ES) techniques have been used to investigate intracortical, corticospinal, spinal and neuromuscular excitability, which influence the efficacy of descending volley transmission to produce movement. This review compiled studies using TMS or ES to investigate neuronal excitability in persistent MSK conditions, to identify techniques used, and to synthesis evidence for neural deficits. We used narrative synthesis to summarise individual study findings. We included 60 studies; 52/60 used at least one TMS technique, and more frequently measured corticospinal tract excitability (48/52). 15/60 studies used at least one ES technique, and more frequently measured neuromuscular excitability (15/15). In tendinopathy, excitability was assessed for a range of distinct neurones; no study measured neuromuscular excitability in low back pain, osteoarthritis or shoulder pain, nor spinal or intracortical excitability in shoulder pain. This review identified a range of TMS and ES techniques used to assess excitability of neural elements. It provides insight for specific deficits contributing to functional impairments in certain persistent MSK conditions, while highlighting evidence gaps hindering the ability to draw meaningful inferences.</div></div>\",\"PeriodicalId\":56123,\"journal\":{\"name\":\"Journal of Electromyography and Kinesiology\",\"volume\":\"82 \",\"pages\":\"Article 103011\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electromyography and Kinesiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1050641125000379\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromyography and Kinesiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050641125000379","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Transcranial magnetic stimulation and electrical stimulation techniques used to measure the excitability of distinct neuronal populations that influence motor output in people with persistent musculoskeletal conditions: A scoping review and narrative synthesis of evidence
Functional impairments are evident in persistent musculoskeletal (MSK) conditions, and linked to altered excitability of neuronal elements contributing to motor output. In MSK conditions, transcranial magnetic stimulation (TMS) or electrical stimulation (ES) techniques have been used to investigate intracortical, corticospinal, spinal and neuromuscular excitability, which influence the efficacy of descending volley transmission to produce movement. This review compiled studies using TMS or ES to investigate neuronal excitability in persistent MSK conditions, to identify techniques used, and to synthesis evidence for neural deficits. We used narrative synthesis to summarise individual study findings. We included 60 studies; 52/60 used at least one TMS technique, and more frequently measured corticospinal tract excitability (48/52). 15/60 studies used at least one ES technique, and more frequently measured neuromuscular excitability (15/15). In tendinopathy, excitability was assessed for a range of distinct neurones; no study measured neuromuscular excitability in low back pain, osteoarthritis or shoulder pain, nor spinal or intracortical excitability in shoulder pain. This review identified a range of TMS and ES techniques used to assess excitability of neural elements. It provides insight for specific deficits contributing to functional impairments in certain persistent MSK conditions, while highlighting evidence gaps hindering the ability to draw meaningful inferences.
期刊介绍:
Journal of Electromyography & Kinesiology is the primary source for outstanding original articles on the study of human movement from muscle contraction via its motor units and sensory system to integrated motion through mechanical and electrical detection techniques.
As the official publication of the International Society of Electrophysiology and Kinesiology, the journal is dedicated to publishing the best work in all areas of electromyography and kinesiology, including: control of movement, muscle fatigue, muscle and nerve properties, joint biomechanics and electrical stimulation. Applications in rehabilitation, sports & exercise, motion analysis, ergonomics, alternative & complimentary medicine, measures of human performance and technical articles on electromyographic signal processing are welcome.