万物互联网络的碳感知边缘计算:数字孪生方法

IF 8.9 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Dang Van Huynh;Saeed R. Khosravirad;Vishal Sharma;Joongheon Kim;Berk Canberk;Trung Q. Duong
{"title":"万物互联网络的碳感知边缘计算:数字孪生方法","authors":"Dang Van Huynh;Saeed R. Khosravirad;Vishal Sharma;Joongheon Kim;Berk Canberk;Trung Q. Duong","doi":"10.1109/JIOT.2025.3564157","DOIUrl":null,"url":null,"abstract":"The rapid growth of edge computing has enabled low-latency and high-efficiency processing for a wide range of applications; however, it also leads to significant energy consumption and carbon emissions. In this context, this study investigates a CO<sub>2</sub> emission minimization problem in a digital twin-aided edge computing system, aiming to optimize task offloading decisions, transmit power, and processing rates of Internet of Things (IoT) devices. To address the formulated mixed-integer nonlinear programming problem, we propose two solutions: 1) an alternating optimization method based on the successive convex approximation framework and 2) a deep reinforcement learning (DRL) approach. Extensive simulations validate the effectiveness of the proposed solutions, demonstrating significant reductions in CO<sub>2</sub> emissions, robust optimization performance, and superior results compared to benchmark schemes. The findings highlight the feasibility of integrating advanced optimization and artificial intelligence-driven techniques to achieve environmentally sustainable and high-performance edge computing systems, paving the way for greener technological innovation.","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":"12 15","pages":"29240-29251"},"PeriodicalIF":8.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon-Aware Edge Computing for Internet of Everything Networks: A Digital Twin Approach\",\"authors\":\"Dang Van Huynh;Saeed R. Khosravirad;Vishal Sharma;Joongheon Kim;Berk Canberk;Trung Q. Duong\",\"doi\":\"10.1109/JIOT.2025.3564157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid growth of edge computing has enabled low-latency and high-efficiency processing for a wide range of applications; however, it also leads to significant energy consumption and carbon emissions. In this context, this study investigates a CO<sub>2</sub> emission minimization problem in a digital twin-aided edge computing system, aiming to optimize task offloading decisions, transmit power, and processing rates of Internet of Things (IoT) devices. To address the formulated mixed-integer nonlinear programming problem, we propose two solutions: 1) an alternating optimization method based on the successive convex approximation framework and 2) a deep reinforcement learning (DRL) approach. Extensive simulations validate the effectiveness of the proposed solutions, demonstrating significant reductions in CO<sub>2</sub> emissions, robust optimization performance, and superior results compared to benchmark schemes. The findings highlight the feasibility of integrating advanced optimization and artificial intelligence-driven techniques to achieve environmentally sustainable and high-performance edge computing systems, paving the way for greener technological innovation.\",\"PeriodicalId\":54347,\"journal\":{\"name\":\"IEEE Internet of Things Journal\",\"volume\":\"12 15\",\"pages\":\"29240-29251\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Internet of Things Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10976254/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10976254/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

边缘计算的快速增长使低延迟和高效率的处理成为可能,适用于广泛的应用;然而,它也导致了大量的能源消耗和碳排放。在此背景下,本研究探讨了数字双辅助边缘计算系统中的二氧化碳排放最小化问题,旨在优化物联网(IoT)设备的任务卸载决策、传输功率和处理速率。为了解决公式化的混合整数非线性规划问题,我们提出了两种解决方案:1)基于连续凸近似框架的交替优化方法和2)深度强化学习(DRL)方法。大量的模拟验证了所提出的解决方案的有效性,证明了二氧化碳排放的显著减少,稳健的优化性能,以及与基准方案相比的优越结果。研究结果强调了集成先进优化和人工智能驱动技术以实现环境可持续和高性能边缘计算系统的可行性,为更绿色的技术创新铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbon-Aware Edge Computing for Internet of Everything Networks: A Digital Twin Approach
The rapid growth of edge computing has enabled low-latency and high-efficiency processing for a wide range of applications; however, it also leads to significant energy consumption and carbon emissions. In this context, this study investigates a CO2 emission minimization problem in a digital twin-aided edge computing system, aiming to optimize task offloading decisions, transmit power, and processing rates of Internet of Things (IoT) devices. To address the formulated mixed-integer nonlinear programming problem, we propose two solutions: 1) an alternating optimization method based on the successive convex approximation framework and 2) a deep reinforcement learning (DRL) approach. Extensive simulations validate the effectiveness of the proposed solutions, demonstrating significant reductions in CO2 emissions, robust optimization performance, and superior results compared to benchmark schemes. The findings highlight the feasibility of integrating advanced optimization and artificial intelligence-driven techniques to achieve environmentally sustainable and high-performance edge computing systems, paving the way for greener technological innovation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Internet of Things Journal
IEEE Internet of Things Journal Computer Science-Information Systems
CiteScore
17.60
自引率
13.20%
发文量
1982
期刊介绍: The EEE Internet of Things (IoT) Journal publishes articles and review articles covering various aspects of IoT, including IoT system architecture, IoT enabling technologies, IoT communication and networking protocols such as network coding, and IoT services and applications. Topics encompass IoT's impacts on sensor technologies, big data management, and future internet design for applications like smart cities and smart homes. Fields of interest include IoT architecture such as things-centric, data-centric, service-oriented IoT architecture; IoT enabling technologies and systematic integration such as sensor technologies, big sensor data management, and future Internet design for IoT; IoT services, applications, and test-beds such as IoT service middleware, IoT application programming interface (API), IoT application design, and IoT trials/experiments; IoT standardization activities and technology development in different standard development organizations (SDO) such as IEEE, IETF, ITU, 3GPP, ETSI, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信