Ziang Wang, Feng Wu, Hui-Hai Zhao, Xin Wan, Xiaotong Ni
{"title":"SuperGrad:超导处理器的可微分模拟器","authors":"Ziang Wang, Feng Wu, Hui-Hai Zhao, Xin Wan, Xiaotong Ni","doi":"10.22331/q-2025-04-24-1722","DOIUrl":null,"url":null,"abstract":"One significant advantage of superconducting processors is their extensive design flexibility, which encompasses various types of qubits and interactions. Given the large number of tunable parameters of a processor, the ability to perform gradient optimization would be highly beneficial. Efficient backpropagation for gradient computation requires a tightly integrated software library, for which no open-source implementation is currently available. In this work, we introduce SuperGrad, a simulator that accelerates the design of superconducting quantum processors by incorporating gradient computation capabilities. SuperGrad offers a user-friendly interface for constructing Hamiltonians and computing both static and dynamic properties of composite systems. This differentiable simulation is valuable for a range of applications, including optimal control, design optimization, and experimental data fitting. In this paper, we demonstrate these applications through examples and code snippets.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"2 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SuperGrad: a differentiable simulator for superconducting processors\",\"authors\":\"Ziang Wang, Feng Wu, Hui-Hai Zhao, Xin Wan, Xiaotong Ni\",\"doi\":\"10.22331/q-2025-04-24-1722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One significant advantage of superconducting processors is their extensive design flexibility, which encompasses various types of qubits and interactions. Given the large number of tunable parameters of a processor, the ability to perform gradient optimization would be highly beneficial. Efficient backpropagation for gradient computation requires a tightly integrated software library, for which no open-source implementation is currently available. In this work, we introduce SuperGrad, a simulator that accelerates the design of superconducting quantum processors by incorporating gradient computation capabilities. SuperGrad offers a user-friendly interface for constructing Hamiltonians and computing both static and dynamic properties of composite systems. This differentiable simulation is valuable for a range of applications, including optimal control, design optimization, and experimental data fitting. In this paper, we demonstrate these applications through examples and code snippets.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-04-24-1722\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-04-24-1722","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
SuperGrad: a differentiable simulator for superconducting processors
One significant advantage of superconducting processors is their extensive design flexibility, which encompasses various types of qubits and interactions. Given the large number of tunable parameters of a processor, the ability to perform gradient optimization would be highly beneficial. Efficient backpropagation for gradient computation requires a tightly integrated software library, for which no open-source implementation is currently available. In this work, we introduce SuperGrad, a simulator that accelerates the design of superconducting quantum processors by incorporating gradient computation capabilities. SuperGrad offers a user-friendly interface for constructing Hamiltonians and computing both static and dynamic properties of composite systems. This differentiable simulation is valuable for a range of applications, including optimal control, design optimization, and experimental data fitting. In this paper, we demonstrate these applications through examples and code snippets.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.