SuperGrad:超导处理器的可微分模拟器

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-04-24 DOI:10.22331/q-2025-04-24-1722
Ziang Wang, Feng Wu, Hui-Hai Zhao, Xin Wan, Xiaotong Ni
{"title":"SuperGrad:超导处理器的可微分模拟器","authors":"Ziang Wang, Feng Wu, Hui-Hai Zhao, Xin Wan, Xiaotong Ni","doi":"10.22331/q-2025-04-24-1722","DOIUrl":null,"url":null,"abstract":"One significant advantage of superconducting processors is their extensive design flexibility, which encompasses various types of qubits and interactions. Given the large number of tunable parameters of a processor, the ability to perform gradient optimization would be highly beneficial. Efficient backpropagation for gradient computation requires a tightly integrated software library, for which no open-source implementation is currently available. In this work, we introduce SuperGrad, a simulator that accelerates the design of superconducting quantum processors by incorporating gradient computation capabilities. SuperGrad offers a user-friendly interface for constructing Hamiltonians and computing both static and dynamic properties of composite systems. This differentiable simulation is valuable for a range of applications, including optimal control, design optimization, and experimental data fitting. In this paper, we demonstrate these applications through examples and code snippets.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"2 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SuperGrad: a differentiable simulator for superconducting processors\",\"authors\":\"Ziang Wang, Feng Wu, Hui-Hai Zhao, Xin Wan, Xiaotong Ni\",\"doi\":\"10.22331/q-2025-04-24-1722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One significant advantage of superconducting processors is their extensive design flexibility, which encompasses various types of qubits and interactions. Given the large number of tunable parameters of a processor, the ability to perform gradient optimization would be highly beneficial. Efficient backpropagation for gradient computation requires a tightly integrated software library, for which no open-source implementation is currently available. In this work, we introduce SuperGrad, a simulator that accelerates the design of superconducting quantum processors by incorporating gradient computation capabilities. SuperGrad offers a user-friendly interface for constructing Hamiltonians and computing both static and dynamic properties of composite systems. This differentiable simulation is valuable for a range of applications, including optimal control, design optimization, and experimental data fitting. In this paper, we demonstrate these applications through examples and code snippets.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-04-24-1722\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-04-24-1722","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超导处理器的一个显著优势是其广泛的设计灵活性,包括各种类型的量子比特和相互作用。鉴于处理器有大量可调参数,执行梯度优化的能力将大有裨益。梯度计算的高效反向传播需要一个紧密集成的软件库,而目前还没有开源的实现。在这项工作中,我们介绍了 SuperGrad 仿真器,它通过整合梯度计算功能来加速超导量子处理器的设计。SuperGrad 提供了一个友好的用户界面,用于构建哈密顿,并计算复合系统的静态和动态特性。这种可微分模拟对一系列应用都很有价值,包括最优控制、设计优化和实验数据拟合。在本文中,我们将通过示例和代码片段演示这些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SuperGrad: a differentiable simulator for superconducting processors
One significant advantage of superconducting processors is their extensive design flexibility, which encompasses various types of qubits and interactions. Given the large number of tunable parameters of a processor, the ability to perform gradient optimization would be highly beneficial. Efficient backpropagation for gradient computation requires a tightly integrated software library, for which no open-source implementation is currently available. In this work, we introduce SuperGrad, a simulator that accelerates the design of superconducting quantum processors by incorporating gradient computation capabilities. SuperGrad offers a user-friendly interface for constructing Hamiltonians and computing both static and dynamic properties of composite systems. This differentiable simulation is valuable for a range of applications, including optimal control, design optimization, and experimental data fitting. In this paper, we demonstrate these applications through examples and code snippets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信