多任务模型融合的数据自适应权重集成

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Anke Tang, Li Shen, Yong Luo, Shiwei Liu, Han Hu, Bo Du, Dacheng Tao
{"title":"多任务模型融合的数据自适应权重集成","authors":"Anke Tang, Li Shen, Yong Luo, Shiwei Liu, Han Hu, Bo Du, Dacheng Tao","doi":"10.1007/s11263-025-02434-2","DOIUrl":null,"url":null,"abstract":"<p>Creating a multi-task model by merging models for distinct tasks has proven to be an economical and scalable approach. Recent research, like task arithmetic, demonstrates that a static solution for multi-task model fusion can be located within the vector space spanned by task vectors. However, the static nature of these methods limits their ability to adapt to the intricacies of individual instances, thereby hindering their performance in complex scenarios. To overcome this limitation, we propose a data-adaptive weight-ensembling approach that generates model weights in time. Specifically, we first feed the input samples into a hypernetwork to generate instance-specific weights for the primary model. Subsequently, we perform a functional call on the primary large model with the instance-specific weights. By generating model weights in time, the unified model gains increased flexibility and can resolve potential weight conflicts between tasks. Building upon this adaptability, our method necessitates solely the model checkpoints and unlabeled test samples using test-time adaptation training. We primarily conduct extensive experiments on vision Transformers and Flan-T5 models, demonstrating superior performance and satisfactory zero-shot transferability.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"7 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Adaptive Weight-Ensembling for Multi-task Model Fusion\",\"authors\":\"Anke Tang, Li Shen, Yong Luo, Shiwei Liu, Han Hu, Bo Du, Dacheng Tao\",\"doi\":\"10.1007/s11263-025-02434-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Creating a multi-task model by merging models for distinct tasks has proven to be an economical and scalable approach. Recent research, like task arithmetic, demonstrates that a static solution for multi-task model fusion can be located within the vector space spanned by task vectors. However, the static nature of these methods limits their ability to adapt to the intricacies of individual instances, thereby hindering their performance in complex scenarios. To overcome this limitation, we propose a data-adaptive weight-ensembling approach that generates model weights in time. Specifically, we first feed the input samples into a hypernetwork to generate instance-specific weights for the primary model. Subsequently, we perform a functional call on the primary large model with the instance-specific weights. By generating model weights in time, the unified model gains increased flexibility and can resolve potential weight conflicts between tasks. Building upon this adaptability, our method necessitates solely the model checkpoints and unlabeled test samples using test-time adaptation training. We primarily conduct extensive experiments on vision Transformers and Flan-T5 models, demonstrating superior performance and satisfactory zero-shot transferability.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-025-02434-2\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02434-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

通过合并不同任务的模型来创建多任务模型已被证明是一种经济且可扩展的方法。最近的研究,如任务算法,表明多任务模型融合的静态解可以定位在任务向量所构成的向量空间内。然而,这些方法的静态特性限制了它们适应单个实例的复杂性的能力,从而阻碍了它们在复杂场景中的性能。为了克服这一限制,我们提出了一种数据自适应权重集成方法,该方法可以及时生成模型权重。具体来说,我们首先将输入样本馈送到超网络中,以生成主模型的实例特定权重。随后,我们使用特定于实例的权重对主要大型模型执行函数调用。通过及时生成模型权重,统一模型获得了更大的灵活性,并且可以解决任务之间潜在的权重冲突。基于这种适应性,我们的方法只需要使用测试时间适应性训练的模型检查点和未标记的测试样本。我们主要在vision transformer和Flan-T5模型上进行了大量的实验,证明了卓越的性能和令人满意的零弹转移性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Adaptive Weight-Ensembling for Multi-task Model Fusion

Creating a multi-task model by merging models for distinct tasks has proven to be an economical and scalable approach. Recent research, like task arithmetic, demonstrates that a static solution for multi-task model fusion can be located within the vector space spanned by task vectors. However, the static nature of these methods limits their ability to adapt to the intricacies of individual instances, thereby hindering their performance in complex scenarios. To overcome this limitation, we propose a data-adaptive weight-ensembling approach that generates model weights in time. Specifically, we first feed the input samples into a hypernetwork to generate instance-specific weights for the primary model. Subsequently, we perform a functional call on the primary large model with the instance-specific weights. By generating model weights in time, the unified model gains increased flexibility and can resolve potential weight conflicts between tasks. Building upon this adaptability, our method necessitates solely the model checkpoints and unlabeled test samples using test-time adaptation training. We primarily conduct extensive experiments on vision Transformers and Flan-T5 models, demonstrating superior performance and satisfactory zero-shot transferability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信