Nandhini Santhanam, Hee E. Kim, David Rügamer, Andreas Bender, Stefan Muthers, Chang Gyu Cho, Angelika Alonso, Kristina Szabo, Franz-Simon Centner, Holger Wenz, Thomas Ganslandt, Michael Platten, Christoph Groden, Michael Neumaier, Fabian Siegel, Máté E. Maros
{"title":"基于机器学习的每日急性缺血性中风入院预测使用天气数据","authors":"Nandhini Santhanam, Hee E. Kim, David Rügamer, Andreas Bender, Stefan Muthers, Chang Gyu Cho, Angelika Alonso, Kristina Szabo, Franz-Simon Centner, Holger Wenz, Thomas Ganslandt, Michael Platten, Christoph Groden, Michael Neumaier, Fabian Siegel, Máté E. Maros","doi":"10.1038/s41746-025-01619-w","DOIUrl":null,"url":null,"abstract":"<p>The climate crisis underscores the need for weather-based predictive analytics in healthcare, as weather factors contribute to ~11% of the global stroke burden. Therefore, we developed machine learning models using locoregional weather data to forecast daily acute ischemic stroke (AIS) admissions. An AIS cohort of 7914 patients admitted between 2015 and 2021 at the tertiary University Medical Center Mannheim, Germany, with a 600,000-population catchment area, was geospatially matched to German Weather Service data. Poisson regression, boosted generalized additive models, support vector machines, random forest, and extreme gradient boosting (XGB) were evaluated within a time-stratified nested cross-validation framework. XGB performed best (mean absolute error: 1.21 cases/day). Maximum air pressure was the top predictor, with temperature exhibiting a bimodal link. Cold and heat stressor days (<i>T</i><sub>min_lag3</sub> < −2 °C; <i>T</i><sub>perceived</sub> < −1.4 °C; <i>T</i><sub>min_lag7</sub> > 15 °C) and stormy conditions (wind gusts > 14 m/s) increased stroke admissions. This generalizable framework could aid real-time hospital planning, effective care and forecasting of various weather-related disease burdens.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"43 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based forecasting of daily acute ischemic stroke admissions using weather data\",\"authors\":\"Nandhini Santhanam, Hee E. Kim, David Rügamer, Andreas Bender, Stefan Muthers, Chang Gyu Cho, Angelika Alonso, Kristina Szabo, Franz-Simon Centner, Holger Wenz, Thomas Ganslandt, Michael Platten, Christoph Groden, Michael Neumaier, Fabian Siegel, Máté E. Maros\",\"doi\":\"10.1038/s41746-025-01619-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The climate crisis underscores the need for weather-based predictive analytics in healthcare, as weather factors contribute to ~11% of the global stroke burden. Therefore, we developed machine learning models using locoregional weather data to forecast daily acute ischemic stroke (AIS) admissions. An AIS cohort of 7914 patients admitted between 2015 and 2021 at the tertiary University Medical Center Mannheim, Germany, with a 600,000-population catchment area, was geospatially matched to German Weather Service data. Poisson regression, boosted generalized additive models, support vector machines, random forest, and extreme gradient boosting (XGB) were evaluated within a time-stratified nested cross-validation framework. XGB performed best (mean absolute error: 1.21 cases/day). Maximum air pressure was the top predictor, with temperature exhibiting a bimodal link. Cold and heat stressor days (<i>T</i><sub>min_lag3</sub> < −2 °C; <i>T</i><sub>perceived</sub> < −1.4 °C; <i>T</i><sub>min_lag7</sub> > 15 °C) and stormy conditions (wind gusts > 14 m/s) increased stroke admissions. This generalizable framework could aid real-time hospital planning, effective care and forecasting of various weather-related disease burdens.</p>\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41746-025-01619-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01619-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Machine learning-based forecasting of daily acute ischemic stroke admissions using weather data
The climate crisis underscores the need for weather-based predictive analytics in healthcare, as weather factors contribute to ~11% of the global stroke burden. Therefore, we developed machine learning models using locoregional weather data to forecast daily acute ischemic stroke (AIS) admissions. An AIS cohort of 7914 patients admitted between 2015 and 2021 at the tertiary University Medical Center Mannheim, Germany, with a 600,000-population catchment area, was geospatially matched to German Weather Service data. Poisson regression, boosted generalized additive models, support vector machines, random forest, and extreme gradient boosting (XGB) were evaluated within a time-stratified nested cross-validation framework. XGB performed best (mean absolute error: 1.21 cases/day). Maximum air pressure was the top predictor, with temperature exhibiting a bimodal link. Cold and heat stressor days (Tmin_lag3 < −2 °C; Tperceived < −1.4 °C; Tmin_lag7 > 15 °C) and stormy conditions (wind gusts > 14 m/s) increased stroke admissions. This generalizable framework could aid real-time hospital planning, effective care and forecasting of various weather-related disease burdens.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.