David Pesquera, Kumara Cordero-Edwards, Marti Checa, Ilia Ivanov, Blai Casals, Marcos Rosado, José Manuel Caicedo, Laura Casado-Zueras, Javier Pablo-Navarro, César Magén, José Santiso, Neus Domingo, Gustau Catalan, Felip Sandiumenge
{"title":"屈曲无铁电片的层次结构","authors":"David Pesquera, Kumara Cordero-Edwards, Marti Checa, Ilia Ivanov, Blai Casals, Marcos Rosado, José Manuel Caicedo, Laura Casado-Zueras, Javier Pablo-Navarro, César Magén, José Santiso, Neus Domingo, Gustau Catalan, Felip Sandiumenge","doi":"10.1016/j.actamat.2025.121080","DOIUrl":null,"url":null,"abstract":"Flat elastic sheets tend to display wrinkles and folds. From pieces of clothing down to two-dimensional crystals, these corrugations appear in response to strain generated by sheet compression or stretching, thermal or mechanical mismatch with other elastic layers, or surface tension. Extensively studied in metals, polymers and, — more recently — in van der Waals exfoliated layers, with the advent of thin single crystal freestanding films of complex oxides, researchers are now paying attention to novel microstructural effects induced by bending ferroelectric-ferroelastics, where polarization is strongly coupled to lattice deformation. Here we show that wrinkle undulations in BaTiO<sub>3</sub> sheets bonded to a viscoelastic substrate transform into a buckle delamination geometry when transferred onto a rigid substrate. Using spatially resolved techniques at different scales (Raman, scanning probe and electron microscopy), we show how these delaminations in the free BaTiO<sub>3</sub> sheets display a self-organization of ferroelastic domains along the buckle profile that strongly differs from the more studied sinusoidal wrinkle geometry. Moreover, we disclose the hierarchical distribution of a secondary set of domains induced by the misalignment of these folding structures from the preferred in-plane crystallographic orientations. Our results disclose the relevance of the morphology and orientation of buckling instabilities in ferroelectric free sheets, for the stabilization of different domain structures, pointing to new routes for domain engineering of ferroelectrics in flexible oxide sheets.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"26 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical domain structures in buckled ferroelectric free sheets\",\"authors\":\"David Pesquera, Kumara Cordero-Edwards, Marti Checa, Ilia Ivanov, Blai Casals, Marcos Rosado, José Manuel Caicedo, Laura Casado-Zueras, Javier Pablo-Navarro, César Magén, José Santiso, Neus Domingo, Gustau Catalan, Felip Sandiumenge\",\"doi\":\"10.1016/j.actamat.2025.121080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flat elastic sheets tend to display wrinkles and folds. From pieces of clothing down to two-dimensional crystals, these corrugations appear in response to strain generated by sheet compression or stretching, thermal or mechanical mismatch with other elastic layers, or surface tension. Extensively studied in metals, polymers and, — more recently — in van der Waals exfoliated layers, with the advent of thin single crystal freestanding films of complex oxides, researchers are now paying attention to novel microstructural effects induced by bending ferroelectric-ferroelastics, where polarization is strongly coupled to lattice deformation. Here we show that wrinkle undulations in BaTiO<sub>3</sub> sheets bonded to a viscoelastic substrate transform into a buckle delamination geometry when transferred onto a rigid substrate. Using spatially resolved techniques at different scales (Raman, scanning probe and electron microscopy), we show how these delaminations in the free BaTiO<sub>3</sub> sheets display a self-organization of ferroelastic domains along the buckle profile that strongly differs from the more studied sinusoidal wrinkle geometry. Moreover, we disclose the hierarchical distribution of a secondary set of domains induced by the misalignment of these folding structures from the preferred in-plane crystallographic orientations. Our results disclose the relevance of the morphology and orientation of buckling instabilities in ferroelectric free sheets, for the stabilization of different domain structures, pointing to new routes for domain engineering of ferroelectrics in flexible oxide sheets.\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2025.121080\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.121080","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Hierarchical domain structures in buckled ferroelectric free sheets
Flat elastic sheets tend to display wrinkles and folds. From pieces of clothing down to two-dimensional crystals, these corrugations appear in response to strain generated by sheet compression or stretching, thermal or mechanical mismatch with other elastic layers, or surface tension. Extensively studied in metals, polymers and, — more recently — in van der Waals exfoliated layers, with the advent of thin single crystal freestanding films of complex oxides, researchers are now paying attention to novel microstructural effects induced by bending ferroelectric-ferroelastics, where polarization is strongly coupled to lattice deformation. Here we show that wrinkle undulations in BaTiO3 sheets bonded to a viscoelastic substrate transform into a buckle delamination geometry when transferred onto a rigid substrate. Using spatially resolved techniques at different scales (Raman, scanning probe and electron microscopy), we show how these delaminations in the free BaTiO3 sheets display a self-organization of ferroelastic domains along the buckle profile that strongly differs from the more studied sinusoidal wrinkle geometry. Moreover, we disclose the hierarchical distribution of a secondary set of domains induced by the misalignment of these folding structures from the preferred in-plane crystallographic orientations. Our results disclose the relevance of the morphology and orientation of buckling instabilities in ferroelectric free sheets, for the stabilization of different domain structures, pointing to new routes for domain engineering of ferroelectrics in flexible oxide sheets.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.