基于文本引导的跨模态注意力的多模态意图识别

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhengyi Li, Junjie Peng, Xuanchao Lin, Zesu Cai
{"title":"基于文本引导的跨模态注意力的多模态意图识别","authors":"Zhengyi Li,&nbsp;Junjie Peng,&nbsp;Xuanchao Lin,&nbsp;Zesu Cai","doi":"10.1007/s10489-025-06583-2","DOIUrl":null,"url":null,"abstract":"<div><p>In natural language understanding, intent recognition stands out as a crucial task that has drawn significant attention. While previous research focuses on intent recognition using task-specific unimodal data, real-world scenarios often involve human intents expressed through various ways, including speech, tone of voice, facial expressions, and actions. This prompts research into integrating multimodal information to more accurately identify human intent. However, existing intent recognition studies often fuse textual and non-textual modalities without considering their quality gap. The gap in feature quality across different modalities hinders the improvement of the model’s performance. To address this challenge, we propose a multimodal intent recognition model to enhance non-textual modality features. Specifically, we enrich the semantics of non-textual modalities by replacing redundant information through text-guided cross-modal attention. Additionally, we introduce a text-centric adaptive fusion gating mechanism to capitalize on the primary role of text modality in intent recognition. Extensive experiments on two multimodal task datasets show that our proposed model performs better in all metrics than state-of-the-art multimodal models. The results demonstrate that our model efficiently enhances non-textual modality features and fuses multimodal information, showing promising potential for intent recognition.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal intent recognition based on text-guided cross-modal attention\",\"authors\":\"Zhengyi Li,&nbsp;Junjie Peng,&nbsp;Xuanchao Lin,&nbsp;Zesu Cai\",\"doi\":\"10.1007/s10489-025-06583-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In natural language understanding, intent recognition stands out as a crucial task that has drawn significant attention. While previous research focuses on intent recognition using task-specific unimodal data, real-world scenarios often involve human intents expressed through various ways, including speech, tone of voice, facial expressions, and actions. This prompts research into integrating multimodal information to more accurately identify human intent. However, existing intent recognition studies often fuse textual and non-textual modalities without considering their quality gap. The gap in feature quality across different modalities hinders the improvement of the model’s performance. To address this challenge, we propose a multimodal intent recognition model to enhance non-textual modality features. Specifically, we enrich the semantics of non-textual modalities by replacing redundant information through text-guided cross-modal attention. Additionally, we introduce a text-centric adaptive fusion gating mechanism to capitalize on the primary role of text modality in intent recognition. Extensive experiments on two multimodal task datasets show that our proposed model performs better in all metrics than state-of-the-art multimodal models. The results demonstrate that our model efficiently enhances non-textual modality features and fuses multimodal information, showing promising potential for intent recognition.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 7\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06583-2\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06583-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在自然语言理解领域,意图识别是一项至关重要的任务,受到了广泛关注。以往的研究侧重于使用特定任务的单模态数据进行意图识别,而现实世界中的场景往往涉及人类通过各种方式表达的意图,包括语音、语调、面部表情和动作。这就促使人们研究如何整合多模态信息,以更准确地识别人类意图。然而,现有的意图识别研究往往融合了文本和非文本模式,却没有考虑它们在质量上的差距。不同模态之间的特征质量差距阻碍了模型性能的提高。为了应对这一挑战,我们提出了一种多模态意图识别模型,以增强非文本模态特征。具体来说,我们通过文本引导的跨模态关注来替换冗余信息,从而丰富非文本模态的语义。此外,我们还引入了以文本为中心的自适应融合门控机制,以充分利用文本模态在意图识别中的主要作用。在两个多模态任务数据集上进行的广泛实验表明,我们提出的模型在所有指标上都优于最先进的多模态模型。实验结果表明,我们的模型能有效增强非文本模态特征并融合多模态信息,在意图识别方面显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal intent recognition based on text-guided cross-modal attention

In natural language understanding, intent recognition stands out as a crucial task that has drawn significant attention. While previous research focuses on intent recognition using task-specific unimodal data, real-world scenarios often involve human intents expressed through various ways, including speech, tone of voice, facial expressions, and actions. This prompts research into integrating multimodal information to more accurately identify human intent. However, existing intent recognition studies often fuse textual and non-textual modalities without considering their quality gap. The gap in feature quality across different modalities hinders the improvement of the model’s performance. To address this challenge, we propose a multimodal intent recognition model to enhance non-textual modality features. Specifically, we enrich the semantics of non-textual modalities by replacing redundant information through text-guided cross-modal attention. Additionally, we introduce a text-centric adaptive fusion gating mechanism to capitalize on the primary role of text modality in intent recognition. Extensive experiments on two multimodal task datasets show that our proposed model performs better in all metrics than state-of-the-art multimodal models. The results demonstrate that our model efficiently enhances non-textual modality features and fuses multimodal information, showing promising potential for intent recognition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信