具有严格蕴涵和弱差分的有界分配格

IF 0.3 4区 数学 Q1 Arts and Humanities
Sergio Celani, Agustín Nagy, Botero William Zuluaga
{"title":"具有严格蕴涵和弱差分的有界分配格","authors":"Sergio Celani,&nbsp;Agustín Nagy,&nbsp;Botero William Zuluaga","doi":"10.1007/s00153-024-00945-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we introduce the class of weak Heyting–Brouwer algebras (WHB-algebras, for short). We extend the well known duality between distributive lattices and Priestley spaces, in order to exhibit a relational Priestley-like duality for WHB-algebras. Finally, as an application of the duality, we build the tense extension of a WHB-algebra and we employ it as a tool for proving structural properties of the variety such as the finite model property, the amalgamation property, the congruence extension property and the Maehara interpolation property.\n</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":"64 3-4","pages":"387 - 422"},"PeriodicalIF":0.3000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounded distributive lattices with strict implication and weak difference\",\"authors\":\"Sergio Celani,&nbsp;Agustín Nagy,&nbsp;Botero William Zuluaga\",\"doi\":\"10.1007/s00153-024-00945-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we introduce the class of weak Heyting–Brouwer algebras (WHB-algebras, for short). We extend the well known duality between distributive lattices and Priestley spaces, in order to exhibit a relational Priestley-like duality for WHB-algebras. Finally, as an application of the duality, we build the tense extension of a WHB-algebra and we employ it as a tool for proving structural properties of the variety such as the finite model property, the amalgamation property, the congruence extension property and the Maehara interpolation property.\\n</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":\"64 3-4\",\"pages\":\"387 - 422\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-024-00945-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-024-00945-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将介绍弱海廷-布劳威尔代数(简称 WHB-代数)。我们扩展了众所周知的分布网格与普里斯特利空间之间的对偶性,从而展示了 WHB-algebras 的类似普里斯特利的关系对偶性。最后,作为对偶性的应用,我们建立了 WHB 代数的时态扩展,并将其作为证明该代数结构性质的工具,如有限模型性质、合并性质、全等扩展性质和前原内插性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounded distributive lattices with strict implication and weak difference

In this paper we introduce the class of weak Heyting–Brouwer algebras (WHB-algebras, for short). We extend the well known duality between distributive lattices and Priestley spaces, in order to exhibit a relational Priestley-like duality for WHB-algebras. Finally, as an application of the duality, we build the tense extension of a WHB-algebra and we employ it as a tool for proving structural properties of the variety such as the finite model property, the amalgamation property, the congruence extension property and the Maehara interpolation property.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信