舍曲林、替加滨和比西弗定在6-羟多巴胺治疗的帕金森病细胞模型中具有自噬诱导电位的神经保护活性

IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chaemi Lee, Seong Soon Kim, Myung Ae Bae, Seong Hwan Kim
{"title":"舍曲林、替加滨和比西弗定在6-羟多巴胺治疗的帕金森病细胞模型中具有自噬诱导电位的神经保护活性","authors":"Chaemi Lee,&nbsp;Seong Soon Kim,&nbsp;Myung Ae Bae,&nbsp;Seong Hwan Kim","doi":"10.1007/s11064-025-04404-z","DOIUrl":null,"url":null,"abstract":"<div><p>Parkinson’s disease (PD) is one of neurodegenerative diseases characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The development of a neuroprotective therapy is crucial for mitigating features and progression of PD. Since autophagy induction has recently emerged as a promising neuroprotective strategy, this study aimed to identify autophagy-inducing compounds and evaluate their neuroprotective activity. Among 3,200 compounds consisting of FDA-approved drugs or are under active development, 547 compounds targeting neurological diseases were filtered in, and three compounds (sertraline, tiagabine and bicifadine) were finally identified to exhibit the autophagy-inducing activity and also demonstrated the autophagy-dependent neuroprotective action by inhibiting the mammalian target of rapamycin (mTOR) in 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in PC12 cells. Furthermore, the analysis of neurochemical changes suggested that the ability of those compounds to restore the quantity of cellular neurotransmitters such as betaine, 5-hydroxyindoleacetic acid and kynurenine might be linked to their neuroprotective function. In conclusion, compounds like sertraline, tiagabine, and bicifadine that have the ability to induce autophagy and inhibit mTOR might be repurposed as PD treatment to protect the neuronal cells.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroprotective Activities of Sertraline, Tiagabine, and Bicifadine with Autophagy-Inducing Potentials in a 6-Hydroxidopamine-Treated Parkinson’s Disease Cell Model\",\"authors\":\"Chaemi Lee,&nbsp;Seong Soon Kim,&nbsp;Myung Ae Bae,&nbsp;Seong Hwan Kim\",\"doi\":\"10.1007/s11064-025-04404-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Parkinson’s disease (PD) is one of neurodegenerative diseases characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The development of a neuroprotective therapy is crucial for mitigating features and progression of PD. Since autophagy induction has recently emerged as a promising neuroprotective strategy, this study aimed to identify autophagy-inducing compounds and evaluate their neuroprotective activity. Among 3,200 compounds consisting of FDA-approved drugs or are under active development, 547 compounds targeting neurological diseases were filtered in, and three compounds (sertraline, tiagabine and bicifadine) were finally identified to exhibit the autophagy-inducing activity and also demonstrated the autophagy-dependent neuroprotective action by inhibiting the mammalian target of rapamycin (mTOR) in 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in PC12 cells. Furthermore, the analysis of neurochemical changes suggested that the ability of those compounds to restore the quantity of cellular neurotransmitters such as betaine, 5-hydroxyindoleacetic acid and kynurenine might be linked to their neuroprotective function. In conclusion, compounds like sertraline, tiagabine, and bicifadine that have the ability to induce autophagy and inhibit mTOR might be repurposed as PD treatment to protect the neuronal cells.</p></div>\",\"PeriodicalId\":719,\"journal\":{\"name\":\"Neurochemical Research\",\"volume\":\"50 3\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11064-025-04404-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-025-04404-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)是一种以黑质多巴胺能神经元进行性丧失为特征的神经退行性疾病。神经保护疗法的发展对缓解PD的特征和进展至关重要。由于自噬诱导最近成为一种很有前途的神经保护策略,本研究旨在鉴定自噬诱导化合物并评估其神经保护活性。在3200种由fda批准的药物组成或正在积极开发的化合物中,筛选了547种针对神经系统疾病的化合物,最终鉴定出3种化合物(舍曲林、替加比和比西弗定)具有自噬诱导活性,并通过抑制6-羟多巴胺(6-OHDA)诱导的PC12细胞神经毒性中雷帕霉素(mTOR)的哺乳动物靶点显示出自噬依赖的神经保护作用。此外,对神经化学变化的分析表明,这些化合物恢复细胞神经递质(如甜菜碱、5-羟基吲哚乙酸和犬尿氨酸)数量的能力可能与它们的神经保护功能有关。综上所述,舍曲林、替加滨和比西弗定等具有诱导自噬和抑制mTOR能力的化合物可能被重新用于PD治疗,以保护神经元细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuroprotective Activities of Sertraline, Tiagabine, and Bicifadine with Autophagy-Inducing Potentials in a 6-Hydroxidopamine-Treated Parkinson’s Disease Cell Model

Parkinson’s disease (PD) is one of neurodegenerative diseases characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The development of a neuroprotective therapy is crucial for mitigating features and progression of PD. Since autophagy induction has recently emerged as a promising neuroprotective strategy, this study aimed to identify autophagy-inducing compounds and evaluate their neuroprotective activity. Among 3,200 compounds consisting of FDA-approved drugs or are under active development, 547 compounds targeting neurological diseases were filtered in, and three compounds (sertraline, tiagabine and bicifadine) were finally identified to exhibit the autophagy-inducing activity and also demonstrated the autophagy-dependent neuroprotective action by inhibiting the mammalian target of rapamycin (mTOR) in 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in PC12 cells. Furthermore, the analysis of neurochemical changes suggested that the ability of those compounds to restore the quantity of cellular neurotransmitters such as betaine, 5-hydroxyindoleacetic acid and kynurenine might be linked to their neuroprotective function. In conclusion, compounds like sertraline, tiagabine, and bicifadine that have the ability to induce autophagy and inhibit mTOR might be repurposed as PD treatment to protect the neuronal cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurochemical Research
Neurochemical Research 医学-神经科学
CiteScore
7.70
自引率
2.30%
发文量
320
审稿时长
6 months
期刊介绍: Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信