{"title":"以高斯映射为实数部分的复连分数映射的动力学","authors":"Hiromi Ei , Hitoshi Nakada , Rie Natsui","doi":"10.1016/j.aim.2025.110286","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the complex continued fraction map <em>T</em> defined by R. Kaneiwa, I. Shiokawa, and J. Tamura (1975) associated with the Eisenstein field <span><math><mi>Q</mi><mo>(</mo><msqrt><mrow><mo>−</mo><mn>3</mn></mrow></msqrt><mo>)</mo></math></span>. A significant aspect of their continued fraction map is that the real number part of this map <em>T</em> is exactly the simple continued fraction map (Gauss map). In this paper we characterize the set of strictly periodic expansions of continued fraction expansions associated to this map in terms of quadratic extensions of <span><math><mi>Q</mi><mo>(</mo><msqrt><mrow><mo>−</mo><mn>3</mn></mrow></msqrt><mo>)</mo></math></span> in connection with the closure of <span><math><mo>{</mo><mo>−</mo><mfrac><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></mfrac><mo>:</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></math></span>, where <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span>, is the denominator of the <em>n</em>th principal convergent of the continued fraction expansion. Moreover, we show that the closure of <span><math><mo>{</mo><mo>−</mo><mfrac><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></mfrac><mo>:</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></math></span> has positive Lebesgue measure on the complex plane <span><math><mi>C</mi></math></span> though it has infinitely many holes. This gives us that the construction of the natural extension of <em>T</em> on a subset of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo><mo>{</mo><mtext>diagonal</mtext><mo>}</mo></math></span> is equivalent to the geodesics over the hyperbolic space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Then the invariant measure for the natural extension map is given by the hyperbolic measure. Hence its projection to the complex plane is obviously the invariant measure for <em>T</em>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"472 ","pages":"Article 110286"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the dynamics of a complex continued fraction map which contains the Gauss map as its real number section\",\"authors\":\"Hiromi Ei , Hitoshi Nakada , Rie Natsui\",\"doi\":\"10.1016/j.aim.2025.110286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the complex continued fraction map <em>T</em> defined by R. Kaneiwa, I. Shiokawa, and J. Tamura (1975) associated with the Eisenstein field <span><math><mi>Q</mi><mo>(</mo><msqrt><mrow><mo>−</mo><mn>3</mn></mrow></msqrt><mo>)</mo></math></span>. A significant aspect of their continued fraction map is that the real number part of this map <em>T</em> is exactly the simple continued fraction map (Gauss map). In this paper we characterize the set of strictly periodic expansions of continued fraction expansions associated to this map in terms of quadratic extensions of <span><math><mi>Q</mi><mo>(</mo><msqrt><mrow><mo>−</mo><mn>3</mn></mrow></msqrt><mo>)</mo></math></span> in connection with the closure of <span><math><mo>{</mo><mo>−</mo><mfrac><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></mfrac><mo>:</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></math></span>, where <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span>, is the denominator of the <em>n</em>th principal convergent of the continued fraction expansion. Moreover, we show that the closure of <span><math><mo>{</mo><mo>−</mo><mfrac><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></mfrac><mo>:</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></math></span> has positive Lebesgue measure on the complex plane <span><math><mi>C</mi></math></span> though it has infinitely many holes. This gives us that the construction of the natural extension of <em>T</em> on a subset of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo><mo>{</mo><mtext>diagonal</mtext><mo>}</mo></math></span> is equivalent to the geodesics over the hyperbolic space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Then the invariant measure for the natural extension map is given by the hyperbolic measure. Hence its projection to the complex plane is obviously the invariant measure for <em>T</em>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"472 \",\"pages\":\"Article 110286\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825001847\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001847","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑由R. Kaneiwa, I. Shiokawa和J. Tamura(1975)定义的与爱森斯坦场Q(−3)相关的复连分数映射T。它们的连分式映射的一个重要方面是这个映射T的实数部分恰好是简单的连分式映射(高斯映射)。本文用Q(−3)的二次展开式与{−qnqn−1:n≥1}闭包刻画了与该映射相关的连分式展开式的严格周期展开式集合,其中qn, n≥0是连分式展开式的第n个主收敛的分母。此外,我们还证明了{−qnqn−1:n≥1}的闭包在复平面C上具有正的勒贝格测度,尽管它有无穷多个孔。这给出了T在C2∈{对角线}子集上的自然扩展的构造等价于双曲空间H3上的测地线。然后用双曲测度给出了自然可拓映射的不变测度。因此它在复平面上的投影显然是T的不变测度。
On the dynamics of a complex continued fraction map which contains the Gauss map as its real number section
We consider the complex continued fraction map T defined by R. Kaneiwa, I. Shiokawa, and J. Tamura (1975) associated with the Eisenstein field . A significant aspect of their continued fraction map is that the real number part of this map T is exactly the simple continued fraction map (Gauss map). In this paper we characterize the set of strictly periodic expansions of continued fraction expansions associated to this map in terms of quadratic extensions of in connection with the closure of , where , , is the denominator of the nth principal convergent of the continued fraction expansion. Moreover, we show that the closure of has positive Lebesgue measure on the complex plane though it has infinitely many holes. This gives us that the construction of the natural extension of T on a subset of is equivalent to the geodesics over the hyperbolic space . Then the invariant measure for the natural extension map is given by the hyperbolic measure. Hence its projection to the complex plane is obviously the invariant measure for T.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.